#### DRAINAGE STATEMENT

For

#### NorthStar Capital, LLC

**Point View Luxury Apartments** 

Block 113, Lots 41 & 43 842 & 850 Arnold Avenue Borough of Point Pleasant, Ocean County, NJ

Prepared by:



8 Robbins Street, Suite 102 Toms River, NJ 08753 (732) 974-0198

Douglas Grysko, PE

NJ Professional Engineer License #45896

December 2020 DEC # 3639-99-001

#### **TABLE OF CONTENTS**

| Section |                                    | <u>Page</u> |
|---------|------------------------------------|-------------|
| I.      | Drainage Summary                   | 2           |
| II.     | Existing Drainage Conditions       | 2           |
| III.    | Proposed Drainage Conditions       | 3           |
| IV.     | Design Methodology                 | 4           |
| V.      | Runoff Rate Reductions Performance | 4           |
| VI.     | Conclusion                         | 4           |

#### **APPENDIX**

- Runoff Curve Number (CN) Calculations Existing
- Runoff Curve Number (CN) Calculations Proposed
- Hydrograph Summary Reports Existing & Proposed Conditions, 2 & 10 Yr. Storm Events
- Web Soil Survey Map
- Pipe Sizing Calculations
- Soil Testing Logs
- Drainage Area Maps

I. <u>DRAINAGE SUMMARY</u>

This Drainage Statement has been prepared to define and analyze the stormwater drainage conditions that

would occur as a result of the redevelopment of the existing dentist office and single-family home, located at

842 and 850 Arnold Avenue in the Borough of Point Pleasant, Ocean County, New Jersey.

Under the present conditions, the site is developed as an existing dentist office and single-family home. The

existing development has an impervious coverage of 12,693 SF (0.29 Acres). The proposed development is a

Multi-Family Apartment Complex with associated parking, landscaping, lighting, and other site amenities.

The proposed development's impervious coverage is 21,447 SF (0.49 Acres). The net increase in impervious

area is 8,754 SF (0.20 Acres).

This Drainage Statement identifies and describes the manner by which the design provides the performance

measures to minimize the adverse impact of stormwater runoff. As this project consists of less than one acre of

land disturbance and proposes less than ¼ acre increase in impervious surface, it does not qualify as a "major"

development, and is not subject to the new NJDEP stormwater management, water quality, or groundwater

recharge regulations (NJAC 7:8). Therefore, the study has been prepared to comply with the New Jersey Soil

Erosion and Sediment Control Standards for flow reduction requirements. The scope of the study includes the

construction of the proposed building, associated driveways and parking areas, landscaping, stormwater

collection system, and associated improvements as shown on the accompanying engineering drawings.

Hydrological evaluation is provided for the 2 and 10 year storm events utilizing the Urban Hydrology for

Small Watershed TR55 method. The TR55 method is utilized to design the detention system. The Rational

Method is used to size the storm drainage system.

The SCD flow reduction requirements are as follows:

2-year:

50% reduction of any increase in the existing impervious surface runoff

10-year:

25% reduction of any increase in the existing impervious surface runoff

II. EXISTING DRAINAGE CONDITIONS

The existing conditions of the tract have been verified by the Boundary and Topography Survey as prepared by

InSite Surveying, LLC, dated July 24, 2020, last revised August 12, 2020. This information has been utilized

to establish an Existing Conditions Drainage Area Map which is included within the Appendix of this Report.

NorthStar Capital, LLC DEC# 3639-99-001

2

December 2020

The tract has been evaluated with the following existing drainage sub-watershed area:

<u>Study Area South</u>: This area consists of the existing dentist office and single-family home with associated impervious and open space areas. Under existing conditions stormwater runoff from this area is tributary to the southern property line.

Based on Ocean County soils survey information, the soil types native to the site include:

|                    | OCEAN COUNTY SOIL SURVEY INFORM      | ATION                          |
|--------------------|--------------------------------------|--------------------------------|
| SOIL TYPE (SYMBOL) | SOIL TYPE (NAME)                     | HYDROLOGIC SOIL<br>GROUP (HSG) |
| EveB               | Evesboro sand, 0 to 5 percent slopes | A                              |

#### III. PROPOSED DRAINAGE CONDITIONS

The proposed development includes the construction of a Multifamily Apartment Complex. Additional site improvements include paved parking areas, landscaping, lighting and other site amenities. The proposed stormwater management facilities, more specifically the proposed aboveground infiltration basin and underground infiltration basin with bubbler outlet have been designed to account for the additional stormwater runoff from the proposed development.

The tract has been evaluated with the following drainage sub-watershed areas as depicted on the Proposed Conditions Drainage Area Map:

<u>Study Area South:</u> This area of the tract consists of proposed paved area on the eastern side of the proposed building and landscaped areas that drain to the open area at the south of the site.

Study Area Basin A: This area of the tract consists of proposed paved area north of the proposed building and landscaped areas that drain to the proposed aboveground basin on the western side of the site. The proposed basin system serves to control the release of stormwater from the 2 & 10 year design storms through a spillway near the southern property line.

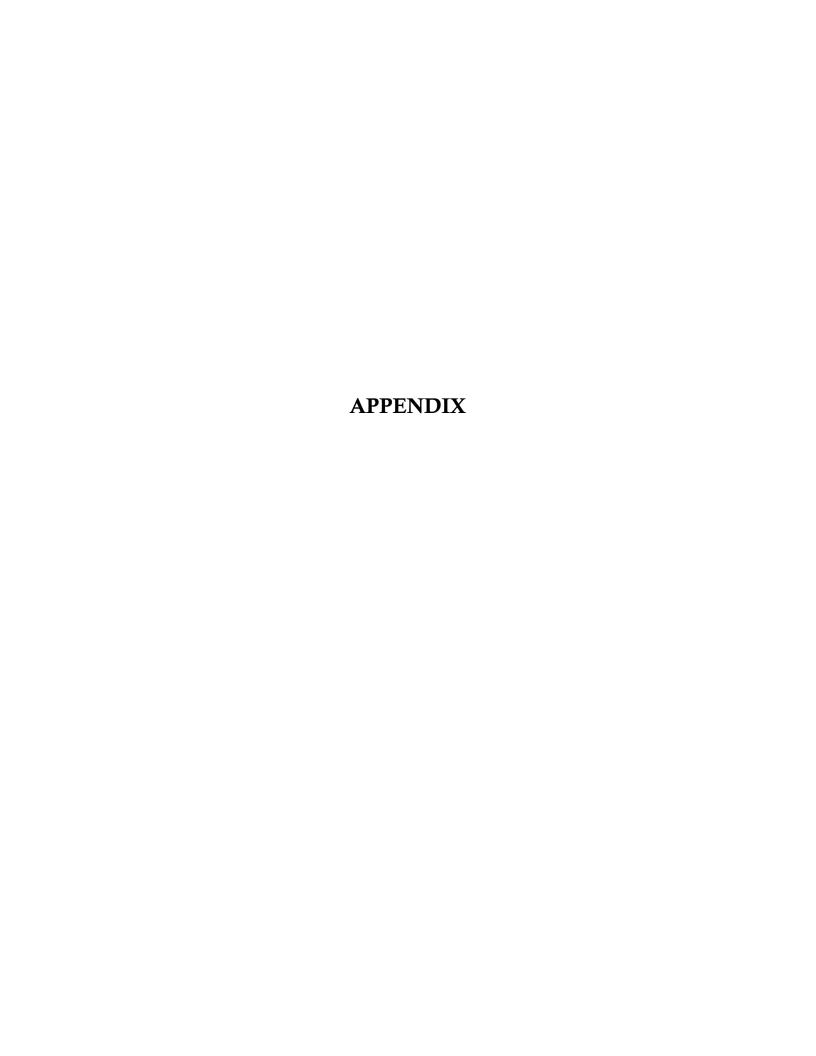
<u>Study Area Roof:</u> This area consists of the roof of the proposed building. Under proposed conditions stormwater runoff from this area is deposited into an underground infiltration basin. The proposed basin system detains both the 2 & 10 year design storms with any overflow for larger storms through a proposed bubbler inlet located along the southern property line.

#### IV. <u>DESIGN METHODOLOGY</u>

The intention of the design of the proposed stormwater management facility for this project is to provide measures as required to address applicable aspects of the Standards for Soil Erosion and Sediment Control in New Jersey.

The stormwater runoff conditions have been modeled utilizing the Hydraflow computer software based on the TR55 "Urban Hydrology for Small Watersheds" method of hydrologic design. The proposed aboveground infiltration basin and underground infiltration basin has been designed to meet the 2 and 10 year stormwater runoff rate reductions as required by the Standards for Soils Erosions and Sediment Control in New Jersey. The stormwater basins detain the stormwater runoff and releases the stormwater at a controlled rate through a spillway and bubbler inlet located at the southern property line.

#### VI. RUNOFF RATE REDUCTION PERFORMANCE


The proposed stormwater management system has been designed in accordance with Standards for Soils Erosions and Sediment Control in New Jersey. The aboveground system has been designed to ensure that the runoff reduction standards are achieved. Standards for Soils Erosions and Sediment Control in New Jersey requires that the proposed increase in runoff for the two (2) and the ten (10) year design storms modeled as 24-hour SCS Type III design storms must reduce the net increase of impervious coverage by 50% and 25%, respectively.

| Design Storm | Overall<br>Existing<br>Runoff Rate | Net Increase in<br>Impervious<br>(Proposed - Existing)<br>Flow Rate | Required<br>Reduction of<br>Net Increase in<br>Impervious | Allowable<br>Runoff Rate | Proposed<br>Runoff Rate |  |
|--------------|------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|--------------------------|-------------------------|--|
| 2 Year       | 0.540 CFS                          | 0.372 CFS                                                           | 50%                                                       | 0.354 CFS                | 0.279 CFS               |  |
| 10 Year      | 0.848 CFS                          | 0.585 CFS                                                           | 25%                                                       | 0.701 CFS                | 0.438 CFS               |  |

#### VII. <u>CONCLUSION</u>

The proposed development has been designed with provisions for the safe and efficient control of stormwater runoff in a manner that will not adversely impact the existing drainage patterns, adjacent roadways, or adjacent parcels.

The stormwater management design shall reduce peak flow rates for the proposed development; therefore this project meets the minimum peak flow reduction for the 2 and the 10 year storm frequencies as required by the Standards for Soils Erosion and Sediment Control in New Jersey.



### RUNOFF CURVE NUMBER (CN) CALCULATIONS - EXISTING



#### Existing Drainage Area Summary and Average Curve Number (CN) Calculations

Project: Proposed Multi-Family Residential

Job #: 3639-99-001

Location: Borough of Point Pleasant

Computed By: JM Checked By: KK

Date: Dec. 2020

|   | Drainage Area | Impervious<br>Area (acre) | Impervious<br>Area (sf) | Curve<br>Number<br>(CN) Used | HSG A -<br>Open<br>Space Area<br>(acre) | HSG A -<br>Open<br>Space Area<br>(sf) | Curve<br>Number<br>(CN) Used | Total Area<br>(acres) | TC (Min.) |
|---|---------------|---------------------------|-------------------------|------------------------------|-----------------------------------------|---------------------------------------|------------------------------|-----------------------|-----------|
|   | Ex. SA South  | 0.29                      | 12,693                  | 98                           | 0.45                                    | 19,607                                | 39                           | 0.74                  | 13.3      |
| - | Total         | 0.29                      | 12.693                  | _                            | 0.45                                    | 19.607                                | - ·                          | 0.74                  |           |

| Per NR | CS Web Soil Survey - | EveB | HSG | Α | Soil | Evesboro sand, 0 to 5 percent slopes |
|--------|----------------------|------|-----|---|------|--------------------------------------|

| Description              | Runoff Curve Number (CN) |
|--------------------------|--------------------------|
| Impervious Surface       | 98                       |
| Open Space (lawn) (good) | 39                       |

### RUNOFF CURVE NUMBER (CN) CALCULATIONS -PROPOSED



#### Proposed Drainage Area Summary and Average Curve Number(CN) Calculations

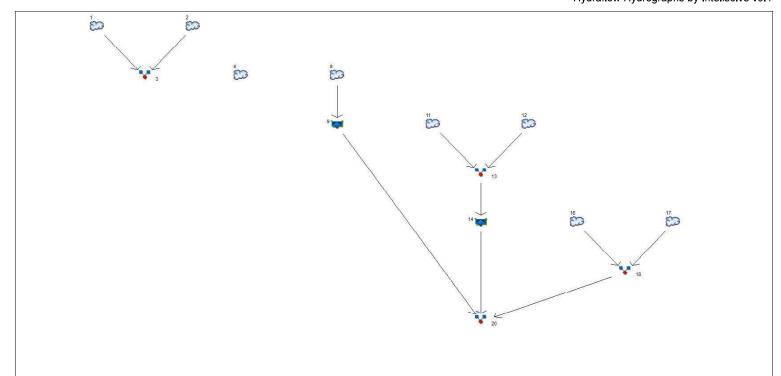
Project: Proposed Multi-Family Residential

Job #: 3639-99-001

Location: Borough of Point Pleasant

Computed By: JM Checked By: KK Date: Dec. 2020

| Drainage Area    | Impervious<br>Area (acre) | Impervious<br>Area (sf) | Curve<br>Number<br>(CN) Used | HSG A -<br>Open<br>Space Area<br>(acre) | HSG A -<br>Open<br>Space Area<br>(sf) | Curve<br>Number<br>(CN) Used | Total<br>Pervious<br>Area<br>(acres) | Total Area<br>(acres) | TC (Min.) |
|------------------|---------------------------|-------------------------|------------------------------|-----------------------------------------|---------------------------------------|------------------------------|--------------------------------------|-----------------------|-----------|
| Prop. SA South   | 0.15                      | 6,588                   | 98                           | 0.15                                    | 6,527                                 | 39                           | 0.15                                 | 0.30                  | 10.0      |
| Prop. SA Basin A | 0.15                      | 6,650                   | 98                           | 0.09                                    | 4,040                                 | 39                           | 0.09                                 | 0.25                  | 10.0      |
| Prop. SA Roof    | 0.19                      | 8,209                   | 98                           | 0.00                                    | -                                     | 39                           | 0.00                                 | 0.19                  | 10.0      |


Total 0.49 0.24 0.24 0.73

| Per NRCS Web Soil Survey - | EveB | HSG | A | Soil | Evesboro sand, 0 to 5 percent slopes |
|----------------------------|------|-----|---|------|--------------------------------------|
|                            | _    |     | - |      | -                                    |

| Description              | Runoff Curve Number (CN) |
|--------------------------|--------------------------|
| Impervious Surface       | 98                       |
| Open Space (lawn) (good) | 39                       |

#### HYDROGRAPH SUMMARY REPORTS EXISTING AND PROPOSED CONDITIONS 2YR & 10YR STORMS

#### **Watershed Model Schematic**



#### <u>Legend</u>

| <u>Hyd.</u> | <u>Origin</u> | <u>Description</u>     |
|-------------|---------------|------------------------|
| 1           | SCS Runoff    | Ex SA South (Imp)      |
| 2           | SCS Runoff    | Ex SA South (Perv)     |
| 3           | Combine       | Ex SA South Total      |
| 6           | SCS Runoff    | Prop Inc in Imp        |
| 8           | SCS Runoff    | Prop SA Roof Total     |
| 9           | Reservoir     | Route to Roof Basin    |
| 11          | SCS Runoff    | Prop SA Basin A (Imp)  |
| 12          | SCS Runoff    | Prop SA Basin A (Perv) |
| 13          | Combine       | Prop SA Basin A Total  |
| 14          | Reservoir     | Route to Basin A       |
| 16          | SCS Runoff    | Prop SA South (Imp)    |
| 17          | SCS Runoff    | Prop SA South (Perv)   |
| 18          | Combine       | Prop SA South Total    |
| 20          | Combine       | Prop total             |
|             |               |                        |

Project: 2, 10 yr.gpw

Thursday, Dec 17, 2020

Hydraflow Hydrographs by Intelisolve v9.1

Thursday, Dec 17, 2020

| Hydrograph Return Period Recap                        | •                                      |
|-------------------------------------------------------|----------------------------------------|
| nyurograph Return Period Recap                        |                                        |
| 2 - Year                                              |                                        |
| Summary Report                                        | 3                                      |
| Hydrograph Reports                                    |                                        |
| Hydrograph No. 1, SCS Runoff, Ex SA South (Imp)       | 4                                      |
| Hydrograph No. 2, SCS Runoff, Ex SA South (Perv)      |                                        |
| Hydrograph No. 3, Combine, Ex SA South Total          |                                        |
| Hydrograph No. 6, SCS Runoff, Prop Inc in Imp         |                                        |
| Hydrograph No. 8, SCS Runoff, Prop SA Roof Total      |                                        |
| Hydrograph No. 9, Reservoir, Route to Roof Basin      |                                        |
| Pond Report - UG Roof Basin                           |                                        |
| Hydrograph No. 11, SCS Runoff, Prop SA Basin A (Imp)  |                                        |
| Hydrograph No. 12, SCS Runoff, Prop SA Basin A (Perv) |                                        |
| Hydrograph No. 13, Combine, Prop SA Basin A Total     |                                        |
| Hydrograph No. 14, Reservoir, Route to Basin A        |                                        |
| Pond Report - AG Basin A                              |                                        |
| Hydrograph No. 16, SCS Runoff, Prop SA South (Imp)    |                                        |
| Hydrograph No. 17, SCS Runoff, Prop SA South (Perv)   |                                        |
| Hydrograph No. 18, Combine, Prop SA South Total       |                                        |
| Hydrograph No. 20, Combine, Prop total                |                                        |
| 10 - Year                                             |                                        |
| Summary Report                                        | 20                                     |
| Hydrograph Reports                                    |                                        |
| Hydrograph No. 1, SCS Runoff, Ex SA South (Imp)       |                                        |
| Hydrograph No. 2, SCS Runoff, Ex SA South (Perv)      |                                        |
| Hydrograph No. 3, Combine, Ex SA South Total          | 23                                     |
| Hydrograph No. 6, SCS Runoff, Prop Inc in Imp         |                                        |
| Hydrograph No. 8, SCS Runoff, Prop SA Roof Total      |                                        |
| Hydrograph No. 9, Reservoir, Route to Roof Basin      |                                        |
| Hydrograph No. 11, SCS Runoff, Prop SA Basin A (Imp)  |                                        |
| Hydrograph No. 12, SCS Runoff, Prop SA Basin A (Perv) |                                        |
| Hydrograph No. 13, Combine, Prop SA Basin A Total     |                                        |
| Hydrograph No. 14, Reservoir, Route to Basin A        |                                        |
| Hydrograph No. 16, SCS Runoff, Prop SA South (Imp)    |                                        |
| Hydrograph No. 17, SCS Runoff, Prop SA South (Perv)   |                                        |
| Hydrograph No. 18, Combine, Prop SA South Total       |                                        |
| Hydrograph No. 20, Combine, Prop total                |                                        |
| , • • • • • • • • • • • • • • • •                     | ······································ |
| IDF Report                                            | 35                                     |

# Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

| No.                            | 1                 | 7                  | က                 | 9               | œ                  | თ                   | F                     | 12                     | 13                    | 4                | 16                  | 17                   | 8                   | 70         | Proj                   |
|--------------------------------|-------------------|--------------------|-------------------|-----------------|--------------------|---------------------|-----------------------|------------------------|-----------------------|------------------|---------------------|----------------------|---------------------|------------|------------------------|
|                                |                   |                    |                   |                 |                    |                     |                       |                        |                       |                  |                     |                      |                     |            |                        |
| Hydrograph<br>description      | Ex SA South (Imp) | Ex SA South (Perv) | Ex SA South Total | Prop Inc in Imp | Prop SA Roof Total | Route to Roof Basin | Prop SA Basin A (Imp) | Prop SA Basin A (Perv) | Prop SA Basin A Total | Route to Basin A | Prop SA South (Imp) | Prop SA South (Perv) | Prop SA South Total | Prop total | Thursday, Dec 17, 2020 |
| Total<br>strge used<br>(cuft)  |                   |                    |                   |                 |                    | 2,184               |                       |                        |                       | 1,726            | 1                   | }                    | ļ                   |            | Thursday, [            |
| Maximum<br>elevation<br>(ft)   |                   | -                  |                   |                 |                    | 11.67               |                       | }                      | -                     | 13.49            |                     | }                    |                     |            | ar                     |
| Inflow<br>hyd(s)               | -                 |                    | 1, 2              |                 |                    | œ                   | -                     | 1                      | 11, 12                | 13               | -                   | }                    | 16, 17              | 9, 14, 18, | Retum Period: 2 Year   |
| Hyd.<br>volume<br>(cuft)       | 3,333             | 6                  | 3,342             | 2,299           | 2,184              | 0                   | 1,724                 | 2                      | 1,726                 | 0                | 1,724               | ဂ                    | 1,727               | 1,727      | Return P               |
| Time to<br>peak<br>(min)       | 730               | 1430               | 730               | 730             | 730                | n/a                 | 730                   | 1430                   | 730                   | n/a              | 730                 | 1430                 | 730                 | 730        |                        |
| Time<br>interval<br>(min)      | 2                 | 5                  | 2                 | 2               | 2                  | 2                   | 5                     | 2                      | 2                     | S                | 2                   | 2                    | 2                   | 2          |                        |
| Peak<br>flow<br>(cfs)          | 0.540             | 0.001              | 0.540             | 0.372           | 0.354              | 0.000               | 0.279                 | 0.000                  | 0.279                 | 0.000            | 0.279               | 0.000                | 0.279               | 0,279      |                        |
| Hydrograph<br>type<br>(origin) | SCS Runoff        | SCS Runoff         | Combine           | SCS Runoff      | SCS Runoff         | Reservoir           | SCS Runoff            | SCS Runoff             | Combine               | Reservoir        | SCS Runoff          | SCS Runoff           | Combine             | Combine    | 2, 10 yr.gpw           |
| No.                            | -                 | 7                  | က                 | 9               | œ                  | 6                   | F                     | 12                     | 13                    | 4                | 16                  | 17                   | 81                  | 20         | 2, 1                   |

# Hydrograph Return Period Recap

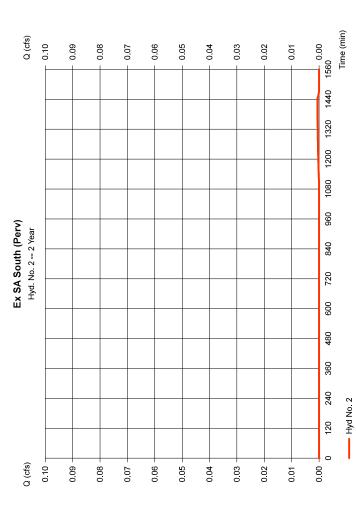
Hydraflow Hydrographs by Intelisolve v9.1

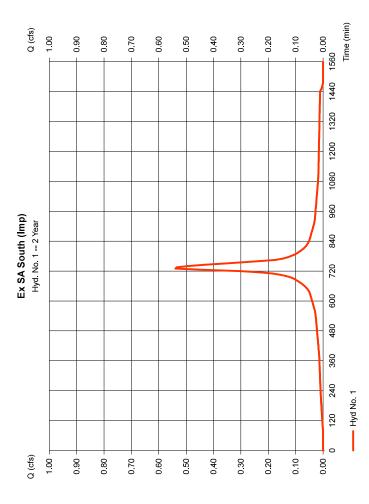
| -    |                          |            |                   |       |      |          |                    |       |              |           |                        |
|------|--------------------------|------------|-------------------|-------|------|----------|--------------------|-------|--------------|-----------|------------------------|
| ž ž  | £                        | Hyd(s)     |                   |       |      | reak out | reak Outllow (cis) |       |              |           | description            |
|      | (origin)                 |            | 1 <del>.</del> Yr | 2-Yr  | 3-Yr | 5-Yr     | 10-Yr              | 25-Yr | 50-Yr        | 100-Yr    |                        |
| -    | SCS Runoff               | -          |                   | 0.540 | -    |          | 0.848              | İ     |              |           | Ex SA South (Imp)      |
| 2    | SCS Runoff               |            | -                 | 0.001 | 1    | I        | 0.022              | İ     | -            | ļ         | Ex SA South (Perv)     |
| ო    | Combine                  | 1,2        | İ                 | 0.540 | -    |          | 0.848              |       |              |           | Ex SA South Total      |
| 9    | SCS Runoff               |            |                   | 0.372 |      |          | 0.585              |       |              |           | Prop Inc in Imp        |
| 80   | SCS Runoff               | ļ          |                   | 0.354 |      |          | 0.555              |       |              |           | Prop SA Roof Total     |
| თ    | Reservoir                | ∞          |                   | 0.000 | -    |          | 0.000              |       |              |           | Route to Roof Basin    |
| £    | SCS Runoff               |            |                   | 0.279 | -    |          | 0.438              |       |              |           | Prop SA Basin A (Imp)  |
| 12   | SCS Runoff               | İ          |                   | 0.000 | ł    |          | 0.004              | İ     |              |           | Prop SA Basin A (Perv) |
| 13   | Combine                  | 11, 12     |                   | 0.279 |      |          | 0.438              |       |              |           | Prop SA Basin A Total  |
| 4    | Reservoir                | 13         |                   | 0.000 |      |          | 0.159              |       |              |           | Route to Basin A       |
| 16   | SCS Runoff               | İ          |                   | 0.279 |      |          | 0.438              |       |              |           | Prop SA South (Imp)    |
| 17   | SCS Runoff               | ļ          | ļ                 | 0.000 | 1    |          | 2000               |       | ļ            | ļ         | Prop SA South (Perv)   |
| . 60 | Combine                  | 16. 17     | ļ                 | 0.279 | ļ    |          | 0.438              | 1     | 1            | ļ         | Prop SA South Total    |
| 2    |                          | :<br>2     |                   | 2     |      |          |                    |       |              |           |                        |
| 20   | Combine                  | 9, 14, 18, |                   | 0.279 | 1    |          | 0.438              |       |              |           | Prop total             |
|      |                          |            |                   |       |      |          |                    |       |              |           |                        |
|      |                          |            |                   |       |      |          |                    |       |              |           |                        |
|      |                          |            |                   |       |      |          |                    |       |              |           |                        |
|      |                          |            |                   |       |      |          |                    |       |              |           |                        |
|      |                          |            |                   |       |      |          |                    |       |              |           |                        |
|      |                          |            |                   |       |      |          |                    |       |              |           |                        |
|      |                          |            |                   |       |      |          |                    |       |              |           |                        |
|      |                          |            |                   |       |      |          |                    |       |              |           |                        |
|      |                          |            |                   |       |      |          |                    |       |              |           |                        |
|      |                          |            |                   |       |      |          |                    |       |              |           |                        |
|      |                          |            |                   |       |      |          |                    |       |              |           |                        |
|      |                          |            |                   |       |      |          |                    |       |              |           |                        |
|      |                          |            |                   |       |      |          |                    |       |              |           |                        |
|      |                          |            |                   |       |      |          |                    |       |              |           |                        |
| Pro  | Proj. file: 2, 10 yr.gpw | wdb.       |                   |       |      |          |                    |       | <br> <br>  H | ırsday, E | Thursday, Dec 17, 2020 |

Hyd. No. 2

Hydraflow Hydrographs by Intelisolve v9.1

Ex SA South (Perv)


Peak discharge = 0.001 cfs
Time to peak = 1430 min
Hyd. volume = 9 cuft
Curve number = 39
Hydraulic length = 0 ft
Time of conc. (Tc) = 13.30 min
Distribution = Custom
Shape factor = 285 = SCS Runoff = 2 yrs = 0.450 ac = 0.05% = USER = 3.42 in = NOAAAtlas 14 Type-D.cds Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip. Storm duration


2

Thursday, Dec 17, 2020

**Hydrograph Report** 

Thursday, Dec 17, 2020 = 0.540 cfs = 730 min = 3,333 cuft = 98 = 0 ft = 10.00 min = Custom = 285 Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor Peak discharge Time to peak Hyd. volume = SCS Runoff = 2 yrs = 5 min = 0.290 ac = 0.0 % = USER = 3.42 in = NOAA Atlas 14 Type-D.cds Hydraflow Hydrographs by Intelisolve v9.1 Ex SA South (Imp) Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip. Storm duration Hyd. No. 1





Hyd. No. 6

Hydraflow Hydrographs by Intelisolve v9.1

Prop Inc in Imp

= SCS Runoff = 2 yrs = 5 min = 0.200 ac = 0.00 % = USER = 3.42 in = NOAA Atlas 14 Type-D.cds Hydrograph type Storm frequency Time interval

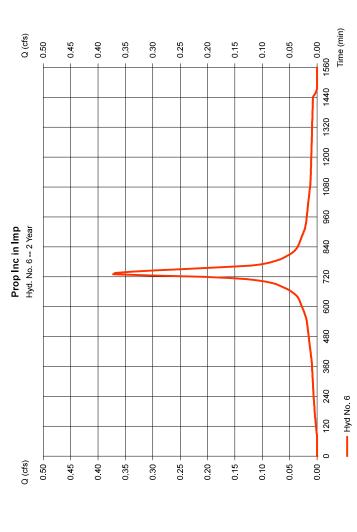
Drainage area Basin Slope Tc method Total precip. Storm duration

Thursday, Dec 17, 2020 = 0.372 cfs = 730 min = 2,299 cuft = 98 = 0 ft = 10.00 min = Custom = 285 Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (TC)
Distribution
Shape factor

# **Hydrograph Report**

Hydraflow Hydrographs by Intelisolve v9.1

Thursday, Dec 17, 2020


9


Hyd. No. 3

Ex SA South Total

= Combine = 2 yrs = 5 min = 1, 2 Hydrograph type Storm frequency Time interval Inflow hyds.

Peak discharge = 0.540 cfs
Time to peak = 730 min
Hyd. volume = 3,342 cuft
Contrib. drain. area = 0.740 ac





Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 9

Route to Roof Basin

= 0.000 cfs = n/a = 0 cuft = 11.67 ft = 2,184 cuft Peak discharge Time to peak Hyd. volume Max. Elevation Max. Storage Reservoir2 yrs5 min8 - Prop SA Roof TotalUG Roof Basin Hydrograph type Storm frequency Time interval Inflow hyd. No.

Reservoir name

Storage Indication method used.

6

Thursday, Dec 17, 2020

**Hydrograph Report** 

Thursday, Dec 17, 2020 Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 8

Prop SA Roof Total

Hydrograph type Storm frequency Time interval

Peak discharge Time to peak Hyd. volume

Drainage area Basin Slope Tc method Total precip. Storm duration

Q (cfs)

Route to Roof Basin Hyd. No. 9 -- 2 Year

> Q (cfs) 0.50

0.45

0.40

0.35

0.30

0.20

0.15

0.25

0.10

0.05

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

= SCS Runoff = 2 yrs = 5 min = 0.190 ac = 0.0 % = USER = 3.42 in = NOAA Atlas 14 Type-D.cds

= 0.354 cfs = 730 min = 2,184 cuft = 98 = 0 ft = 10.00 min = Custom = 285 Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

Time (min) Q (cfs) 0.15 0.10 0.00 0.50 0.45 0.40 0.20 0.05 0.35 0.30 0.25 1560 1440 1320 1200 1080 960 Prop SA Roof Total Hyd. No. 8 -- 2 Year 840 720 900 480 360 240 120 0 Q (cfs) 0.50 0.10 0.45 0.40 0.35 0.30 0.20 0.15 0.00 0.25 0.05

—— Hyd No. 8

Time (min)

0.00

1560 1440

1320

1200

1080

960

840

720

900

480

360

240

120

0

0.00

Total storage used = 2,184 cuft

—— Hyd No. 8

Hyd No. 9

## Hyd. No. 11

Hydraflow Hydrographs by Intelisolve v9.1

Prop SA Basin A (Imp)

= SCS Runoff = 2 yrs = 5 min = 0.150 ac = 0.0 % = USER = 3.42 in = NOAA Atlas 14 Type-D.cds Hydrograph type Storm frequency Time interval

Drainage area Basin Slope Tc method Total precip. Storm duration

Ξ

Thursday, Dec 17, 2020

Peak discharge = 0.279 cfs
Time to peak = 730 min
Hyd. volume = 1,724 cuft
Curve number = 98
Hydraulic length = 0 ft
Time of conc. (Tc) = 10.00 min
Distribution = Custom
Shape factor = 285

Time (min) Q (cfs) 0.00 0.10 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.05 1440 1560 1320 1080 1200 960 Prop SA Basin A (Imp) Hyd. No. 11 – 2 Year 840 720 900 480 360 240 120 0 Q (cfs) 0.50 0.40 0.10 00.00 0.45 0.35 0.30 0.20 0.15 0.25 0.05

—— Hyd No. 11

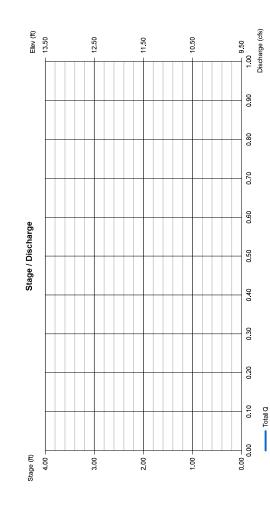
**Pond Report** 

Thursday, Dec 17, 2020

9

Pond No. 2 - UG Roof Basin

Hydraflow Hydrographs by Intelisolve v9.1


Pond Data

UG Chambers - Invert elev. = 10.00 ft, Rise x Span = 2.00 x 2.00 ft, Barrel Len = 65.00 ft, No. Barrels = 4, Slope = 0.00%, Headers = Yes Encasement - Invert elev. = 9.50 ft, Width = 3.50 ft, Height = 3.50 ft, Voids = 100.00%

| able     |
|----------|
| orage T  |
| ge / Sto |
| Sta      |

| Flevation (ff)   Contour area (sqft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stage / Storage Table | age Table        |         |             |                      |               |          |          |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|---------|-------------|----------------------|---------------|----------|----------|----------|
| 10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.20   10.2 | Stage (ft)            | Elevation (ft)   | Contour | area (sqft) | Incr. Storage (cuft) | Total storag  | e (cuft) |          |          |
| 10.55   10.4   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   3.55   | 0.00                  | 9.50             | _       | /a          | 0                    | 0             | _        |          |          |
| 10.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.35                  | 9.85             | _       | /a          | 353                  | 353           |          |          |          |
| 10.55   n/a   353   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059   1.059    | 0.70                  | 10.20            | _       | /a          | 353                  | 902           |          |          |          |
| 10.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.05                  | 10.55            | _       | /a          | 353                  | 1,059         |          |          |          |
| 1125   n/a   353   1,764     1166   n/a   353   2,470     1130   n/a   353   2,470     1230   n/a   353   2,470     1230   n/a   353   2,470     1230   n/a   353   2,470     13,00   n/a   353   3,176     13,00   0.00   0.00   0.00   0.00     14,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00   0.00   0.00     15,00   0.00    | 1.40                  | 10.90            | _       | /a          | 353                  | 1,411         |          |          |          |
| 1150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.75                  | 11.25            | _       | /a          | 353                  | 1,764         |          |          |          |
| 11,95   11,97   11,97   11,97   11,97   11,97   11,97   11,97   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,27   11,2 | 2.10                  | 11.60            | _       | /a          | 353                  | 2,117         |          |          |          |
| 12.50   n/a   353   2.823   17.50   n/a   35.50   3.529   17.50   n/a   35.50   3.529   3.529   17.50   n/a   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529   3.529  | 2.45                  | 11.95            | _       | /a          | 353                  | 2,470         |          |          |          |
| 12.65   12.65   10.6   353   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   3.176   | 2.80                  | 12.30            | _       | /a          | 353                  | 2,823         |          |          |          |
| 13.00   n/a   353   3,529     Orifice Structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,15                  | 12.65            |         | la/         | 353                  | 3.176         |          |          |          |
| Orifice Structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.50                  | 13.00            | _       | l/a         | 353                  | 3,529         |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Culvert / Ori         | ifice Structures |         |             | Weir Structure       | S             |          |          |          |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100  |                       | ₹                |         | _           |                      | ₹             | <u>@</u> | <u>ত</u> | <u> </u> |
| s         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         Weif Type         =                                                                                        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rise (in)             | 0.00             |         |             | Crest Len (ft)       | = 0.00        | 0.00     | 0.00     | 0.00     |
| s         =         0         0         0         Weir Coeff.         =         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33         3.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Span (in)             | 00.00            |         |             | Crest El. (ft)       | = 0.00        | 0.00     | 0.00     | 0.00     |
| tt)         = 0.00         0.00         0.00         0.00         Weir Type         =                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No. Barrels           | 0                |         |             | Weir Coeff.          |               | 3.33     | 3.33     | 3.33     |
| = 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Invert El. (ft)       | 00.00            |         |             | Weir Type            |               | i        | 1        | 1        |
| = 0.00 0.00 0.00 n/a<br>= 0.13 0.13 n/a n/a<br>eff. = 0.60 0.60 0.60 ExfL(m/nr)<br>e = n/a No No No TVV Elev.(tt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Length (ft)           | 0.00             |         |             | Multi-Stage          |               | ٩        | ٩        | No       |
| = .013 .013 n/a<br>eff. = 0.60 0.60 0.60 Exfil.(in/hr)<br>e = n/a No No TW Elev. (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Slope (%)             | 00.00            |         |             |                      |               |          |          |          |
| = 0.60 0.60 0.60 Exfil.(in/hr) = n/a No No No TW Elev. (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N-Value               | 013              |         |             |                      |               |          |          |          |
| = n/a No No TW Elev. (ft) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Orifice Coeff.        | 09'0             |         |             | Exfil.(in/hr)        | = 0.000 (by W | et area) |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Multi-Stage           |                  |         |             | TW Elev. (ft)        | = 0.00        |          |          |          |

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).



Hydraflow Hydrographs by Intelisolve v9.1

## Hyd. No. 13

Prop SA Basin A Total

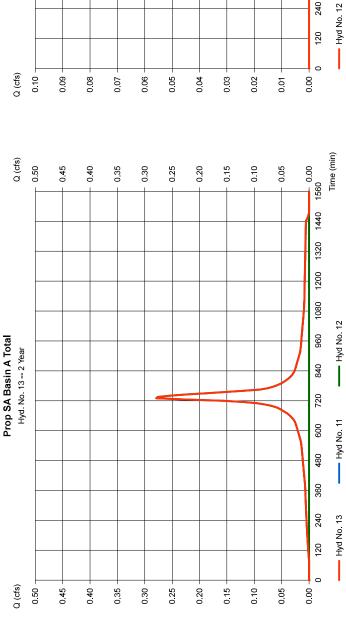
= Combine = 2 yrs = 5 min = 11, 12 Hydrograph type Storm frequency Time interval

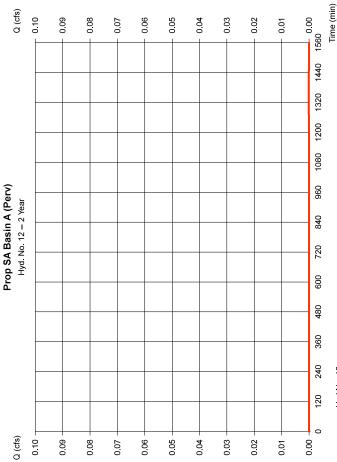
Inflow hyds.

Peak discharge = 0.279 cfs
Time to peak = 730 min
Hyd. volume = 1,726 cuft
Contrib. drain. area = 0.240 ac

# Hydrograph Report

Thursday, Dec 17, 2020 Hydraflow Hydrographs by Intelisolve v9.1


## Hyd. No. 12


Thursday, Dec 17, 2020

5

Prop SA Basin A (Perv)

= 0.000 cfs = 1430 min = 2 cuft = 39 = 0 ft = 10.00 min = Custom = 285 Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor Peak discharge Time to peak Hyd. volume = SCS Runoff = 2 yrs = 5 min = 0.090 ac = 0.0 % = USER = 3.42 in = NOAA Atlas 14 Type-D.cds Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip. Storm duration

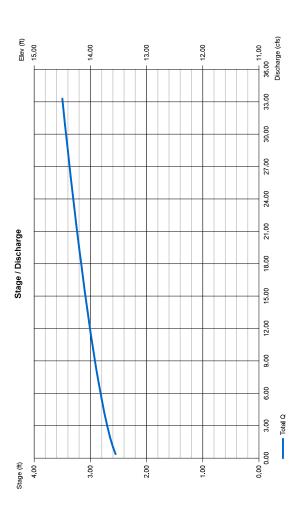




# Pond Report

Hydraflow Hydrographs by Intelisolve v9.1 Thursday, Dec 17, 2020 Pond No. 1 - AG Basin A

Pond Data


Stage / Storage Table

Contours - User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 11.00 ft

|                       | Total storage (cuft) | 0     | 377   | 1,165 | 1,742 | 2,448 | 3,237 |
|-----------------------|----------------------|-------|-------|-------|-------|-------|-------|
|                       | Incr. Storage (cuft) | 0     | 377   | 788   | 578   | 202   | 788   |
|                       | Contour area (sqft)  | 220   | 260   | 1,040 | 1,275 | 1,554 | 1,600 |
| age lable             | Elevation (ft)       | 11.00 | 12.00 | 13.00 | 13.50 | 14.00 | 14.50 |
| Stage / Stotage Table | Stage (ft)           | 0.00  | 1.00  | 2.00  | 2.50  | 3.00  | 3.50  |

| Culvert / Ori   | Sulvert / Orifice Structures | s        |          |          | Weir Structures | res         |                     |          |          |
|-----------------|------------------------------|----------|----------|----------|-----------------|-------------|---------------------|----------|----------|
|                 | Ā                            | <u>@</u> | <u>ত</u> | [PrfRsr] |                 | ₹           | <u>@</u>            | <u>ত</u> | <u> </u> |
| Rise (in)       | 00.0 =                       | 0.00     | 0.00     | 00.00    | Crest Len (ft)  | = 10.00     | 00.00               | 00.00    | 00.00    |
| Span (in)       | = 0.00                       | 0.00     | 0.00     | 00.00    | Crest El. (ft)  | = 13.50     | 0.00                | 0.00     | 0.00     |
| No. Barrels     | 0 =                          | 0        | 0        | 0        | Weir Coeff.     | = 3.33      | 3.33                | 3.33     | 3.33     |
| Invert El. (ft) | = 0.00                       | 0.00     | 0.00     | 00.00    | Weir Type       | = Rect      | 1                   | 1        | 1        |
| Length (ft)     | 00'0 =                       | 0.00     | 0.00     | 00.00    | Multi-Stage     | oN<br>=     | õ                   | 8<br>N   | ٩        |
| Slope (%)       | = 0.00                       | 0.00     | 0.00     | n/a      |                 |             |                     |          |          |
| N-Value         | = .013                       | .013     | .013     | n/a      |                 |             |                     |          |          |
| Orifice Coeff.  | 09'0 =                       | 09.0     | 09.0     | 09.0     | Exfil (in/hr)   | (q) 000 0 = | 0.000 (by Wet area) |          |          |
| Multi-Stage     | = n/a                        | 8        | 8        | %<br>N   | TW Elev. (ft)   | 00.00       |                     |          |          |
|                 |                              |          |          |          |                 |             |                     |          |          |

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (ac) control. Weir risers checked for orifice conditions (ic) and submergence (s).



# Hydrograph Report

15

Hydraflow Hydrographs by Intelisolve v9.1 Thursday, Dec 17, 2020

4

## Hyd No 14

Route to Basin A

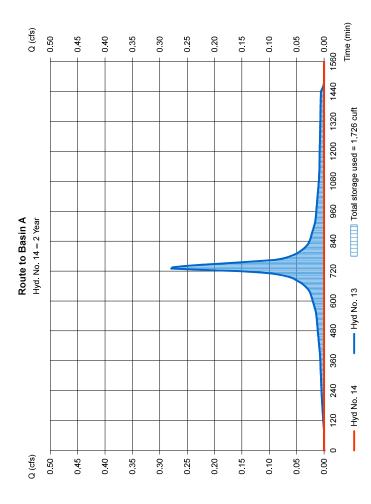
Hydrograph type = Reservoir

Storm frequency = 2 yrs

Time to peak = n/a

Time to peak = n/a

Time to peak = n/a


Time to peak = n/a

Hyd. volume = 0 cuft

Inflow hyd. No. = 13 - Prop SA Basin A Total Max. Elevation = 13.49 ft

Reservoir name = AG Basin A Max. Storage = 1,726 cuft

Storage Indication method used.



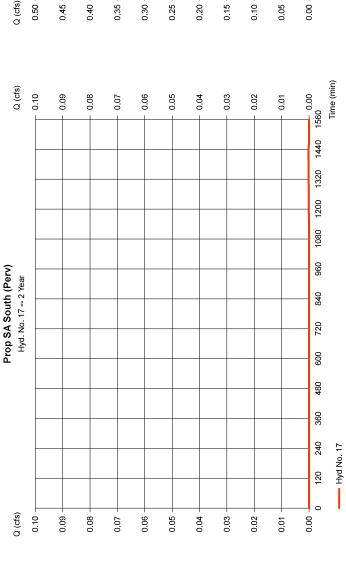
Hydraffow Hydrographs by Intelisolve v9.1

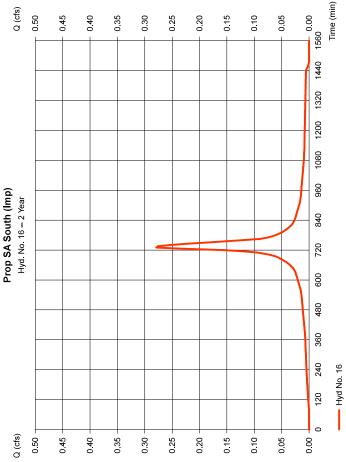
## Hyd. No. 17

Prop SA South (Perv)

Hydrograph typeSCS RunoffPeak discharge= 0.000 cfsStorm frequency= 2 yrsTime to peak= 1430 minTime interval= 5 minHyd. volume= 3 cuftDrainage area= 0.150 acCurve number= 39Basin Slope= 0.0 %Hydraulic length= 0 ftTo method= USERTime of conc. (To)= 10.00 minTotal precip.= 3.42 inDistribution= CustomStorm duration= NOAAAAtlas 14 Type-D.cdsShape factor= 285

# Hydrograph Report


1


Hydraflow Hydrographs by Intelsolve v9.1 Thursday, Dec 17, 2020

## Hyd No 16

Thursday, Dec 17, 2020

Prop SA South (Imp)





Thursday, Dec 17, 2020

## 19

Hydraflow Hydrographs by Intelisolve v9.1

**Hydrograph Report** 

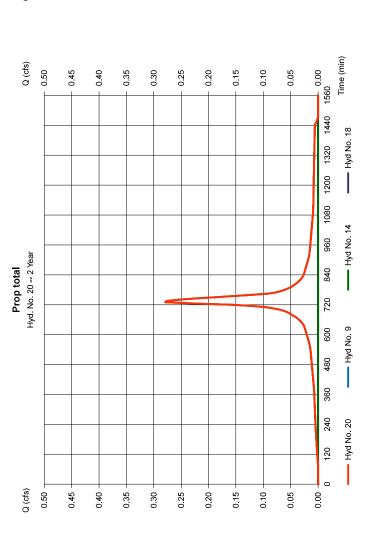
Hyd. No. 20

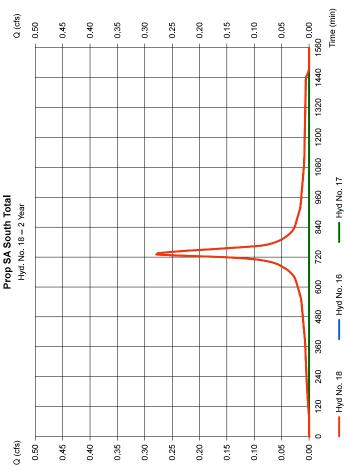
Prop total

= Combine = 2 yrs = 5 min = 9, 14, 18 Hydrograph type Storm frequency Time interval Inflow hyds.

Peak discharge = 0.279 cfs
Time to peak = 730 min
Hyd. volume = 1,727 cuft
Contrib. drain. area = 0.000 ac

**Hydrograph Report** 


Hydraflow Hydrographs by Intelisolve v9.1


Thursday, Dec 17, 2020

Prop SA South Total

Hyd No 18

Peak discharge = 0.279 cfs
Time to peak = 730 min
Hyd. volume = 1,727 cuft
Contrib. drain. area = 0.300 ac = Combine = 2 yrs = 5 min = 16, 17 Hydrograph type Storm frequency Time interval Inflow hyds.

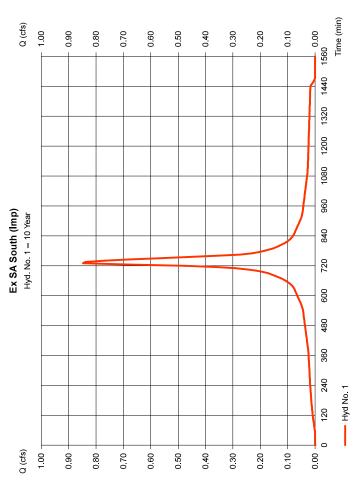




Hydraflow Hydrographs by Intelisolve v9.1

Thursday, Dec 17, 2020

7


Hyd. No. 1

Ex SA South (Imp)

= SCS Runoff = 10 yrs = 5 min = 0.290 ac = 0.0 % = USER = 5.33 in = NOAA Atlas 14 Type-D.cds

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip.

Peak discharge = 0.848 cfs
Time to peak = 730 min
Hyd. volume = 5,327 cuft
Curve number = 98
Hydraulic length = 0 ft
Time of conc. (Tc) = 10.00 min
Distribution = Custom
Shape factor = 285



# **Hydrograph Summary Report**

| o  |
|----|
| 5  |
|    |
| Ð. |
| 2  |
| 0  |
| Ō  |
| =  |
| Φ  |
| =  |
| 느  |
| _  |
| ~  |
| Ω  |
| S  |
| ۳  |
| ₻  |
| ä  |
| 22 |
| 0  |
| õ  |
| _  |
| Φ  |
| ≥  |
| т  |
| ≂  |
| 5  |
| Ò  |
| Œ  |
| æ  |
| -  |
| ₽  |
| ≥  |
| I  |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |

| •           | •                              |                       |                           | ٠                        |                          |                        |                              |                               | nydrallow nydrographs by intellsolve vs. i |
|-------------|--------------------------------|-----------------------|---------------------------|--------------------------|--------------------------|------------------------|------------------------------|-------------------------------|--------------------------------------------|
| Hyd.<br>No. | Hydrograph<br>type<br>(origin) | Peak<br>flow<br>(cfs) | Time<br>interval<br>(min) | Time to<br>peak<br>(min) | Hyd.<br>volume<br>(cuft) | Inflow<br>hyd(s)       | Maximum<br>elevation<br>(ft) | Total<br>strge used<br>(cuft) | Hydrograph<br>description                  |
| -           | SCS Runoff                     | 0.848                 | 2                         | 730                      | 5,327                    | !                      |                              | -                             | Ex SA South (Imp)                          |
| 2           | SCS Runoff                     | 0.022                 | 2                         | 775                      | 440                      | I                      |                              | ļ                             | Ex SA South (Perv)                         |
| ო           | Combine                        | 0.848                 | 2                         | 730                      | 5,767                    | 1, 2                   |                              | -                             | Ex SA South Total                          |
| 9           | SCS Runoff                     | 0,585                 | 22                        | 730                      | 3,674                    |                        |                              | 1                             | Prop Inc in Imp                            |
| 80          | SCS Runoff                     | 0.555                 | 2                         | 730                      | 3,490                    | ļ                      | l                            | -                             | Prop SA Roof Total                         |
| 6           | Reservoir                      | 0.000                 | 2                         | n/a                      | 0                        | ø.                     | 12.96                        | 3,490                         | Route to Roof Basin                        |
| 7           | SCS Runoff                     | 0.438                 | 2                         | 730                      | 2,755                    | ļ                      |                              |                               | Prop SA Basin A (Imp)                      |
| 12          | SCS Runoff                     | 0.004                 | s                         | 775                      | 88                       | ļ                      |                              | -                             | Prop SA Basin A (Perv)                     |
| 13          | Combine                        | 0.438                 | c2                        | 730                      | 2,843                    | 11, 12                 | İ                            | -                             | Prop SA Basin A Total                      |
| 4           | Reservoir                      | 0.159                 | 22                        | 765                      | 1,101                    | 13                     | 13.52                        | 1,773                         | Route to Basin A                           |
| 16          | SCS Runoff                     | 0.438                 | 2                         | 730                      | 2,755                    | ļ                      | į                            | }                             | Prop SA South (Imp)                        |
| 17          | SCS Runoff                     | 0.007                 | 2                         | 775                      | 147                      | 1                      |                              | }                             | Prop SA South (Perv)                       |
| 92          | Combine                        | 0.438                 | 25                        | 730                      | 2,902                    | 16, 17                 |                              | }                             | Prop SA South Total                        |
| 20          | Combine                        | 0.438                 | ro                        | 730                      | 4,003                    | 9, 14, 18,             |                              | }                             | Prop total                                 |
|             |                                |                       |                           |                          |                          |                        |                              |                               |                                            |
| 2, 1        | 2, 10 yr.gpw                   |                       |                           |                          | Return P                 | Return Period: 10 Year | ear                          | Thursday, D                   | Thursday, Dec 17, 2020                     |

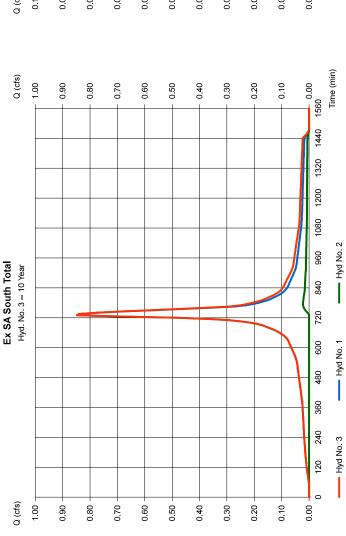
Hydraflow Hydrographs by Intelisolve v9.1

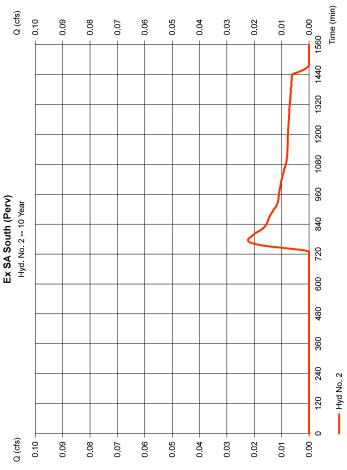
## Hyd. No. 3

Ex SA South Total

= Combine = 10 yrs = 5 min = 1, 2 Hydrograph type Storm frequency Time interval

Inflow hyds.


Thursday, Dec 17, 2020


Peak discharge = 0.848 cfs
Time to peak = 730 min
Hyd. volume = 5,767 cuft
Contrib. drain. area = 0.740 ac

# Hydrograph Report

23

Thursday, Dec 17, 2020 = 0.022 cfs = 775 min = 440 cuft = 39 = 0 ft = 13.30 min = Custom = 285 Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor Peak discharge Time to peak Hyd. volume = SCS Runoff = 10 yrs = 5 min = 0.450 ac = 0.0 % = USER = 5.33 in = NOAA Atlas 14 Type-D.cds Hydraflow Hydrographs by Intelisolve v9.1 Ex SA South (Perv) Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip. Storm duration Hyd. No. 2





Hydraflow Hydrographs by Intelisolve v9.1

### Hyd. No. 8

Prop SA Roof Total

Hydrograph type = SCS Runoff Storm frequency = 10 yrs

Time interval = 5 min Hyd. volume Drainage area = 0.190 ac Curve numb Brain Slope = 0.0 % Hydralic leasures of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the c

Thursday, Dec 17, 2020

25

Peak discharge = 0.555 cfs
Time to peak = 730 min
Hyd. volume = 3.490 cuft
Curve number = 98
Hydraulic length = 0.ft
Time of conc. (Tc) = 10.00 min
Distribution = Custom
Shape factor = 285

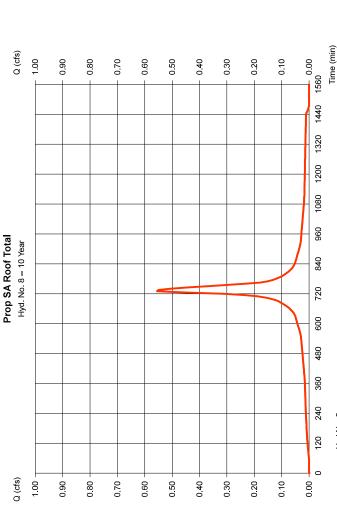
# Hydrograph Report

 Hydr. No. 6
 Thursday, Dec 17, 2020

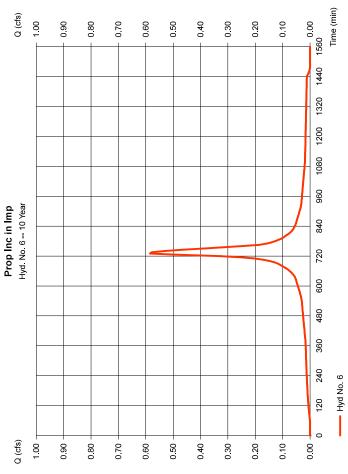
 Prop Inc in Imp
 Prop Inc in Imp
 Peak discharge
 = 0.585 cfs

 Hydrograph type
 = SCS Runoff
 Peak discharge
 = 0.585 cfs

 Storm frequency
 = 10 yrs
 Time to peak
 = 730 min


 Time interval
 = 5 min
 Hydr volume
 = 3.674 cuft

 Drainage area
 = 0.00 %
 Hydraulic length
 = 0.6


 Basin Slope
 = 0.0 %
 Hydraulic length
 = 0 ft

 Total precip.
 = 5.33 in
 Distribution
 = Custom

 Storm duration
 = NOAAAtlas 14 Type-D.cds
 Shape factor
 = 285



Hyd No. 8



Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 11

Prop SA Basin A (Imp)

= 0.438 cfs = 730 min = 2,755 cuft = 98 = 0 ft = 10.00 min = Custom = 285 Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor Peak discharge Time to peak Hyd. volume = SCS Runoff = 10 yrs = 5 min = 0.150 ac = 0.0 % = USER = 5.33 in = NOAAAtlas 14 Type-D.cds Hydrograph type Drainage area Basin Slope Tc method Total precip. Storm duration Storm frequency Time interval

27

Thursday, Dec 17, 2020

**Hydrograph Report** 

Thursday, Dec 17, 2020 Hydraflow Hydrographs by Intelisolve v9.1

Hyd No. 9

Route to Roof Basin

Storm frequency Time interval Inflow hyd. No. Hydrograph type

Reservoir name

Reservoir10 yrs5 min8 - Prop SA Roof TotalUG Roof Basin

= n/a = 0 cuft = 12.96 ft = 3,490 cuft

Peak discharge Time to peak Hyd. volume Max. Elevation Max. Storage

= 0.000 cfs

Storage Indication method used.

Route to Roof Basin Hyd. No. 9 -- 10 Year

0.90

0.45

0.80

0.40

0.70

0.35

0.60

0.30

0.50

0.25

Q (cfs)

Q (cfs) 90.

Q (cfs)

Prop SA Basin A (Imp) Hyd. No. 11 -- 10 Year

Q (cfs)

0.50

0.45

0.40

0.35

0.30

0.20

0.15

0.25

0.10

0.05

0.50

1.00 0.90

0.80

0.70

0.60

0.40

0.20

0.20

0.10 0.05

0.10

0.30

0.15

0.40

0.50

0.30

0.20

900 480

360

240

120

0

0.00

0.00

1560

1440

1320

1080 1200

960

840

720

900

480

360

240

120

0

0.00

—— Hyd No. 11

720

840

Total storage used = 3,490 cuft

--- Hyd No. 8

—— Hyd No. 9

Time (min)

1320

Time (min)

0.00

1560

1440

0.10

1200 1080

960

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 13

Prop SA Basin A Total

= Combine = 10 yrs = 5 min = 11, 12 Hydrograph type Storm frequency Time interval

Inflow hyds.

Peak discharge = 0.438 cfs
Time to peak = 730 min
Hyd. volume = 2,843 cuft
Contrib. drain. area = 0.240 ac

29

Hydrograph Report

Thursday, Dec 17, 2020

Hyd. No. 12

Hydraflow Hydrographs by Intelisolve v9.1

Thursday, Dec 17, 2020

Prop SA Basin A (Perv)

Hydrograph type Storm frequency Time interval

Peak discharge Time to peak Hyd. volume

Drainage area Basin Slope Tc method Total precip. Storm duration

Q (cfs)

Prop SA Basin A Total Hyd. No. 13 -- 10 Year

> Q (cfs) 0.50

0.45

0.40

0.35

0.30

0.20

0.15

0.25

0.10

0.05

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

= SCS Runoff = 10 yrs = 5 min = 0.090 ac = 0.0 % = USER = 5.33 in = NOAA Atlas 14 Type-D.cds

= 0.004 cfs = 775 min = 88 cuft = 39 = 0 ft = 10.00 min = Custom = 285 Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

Q (cfs) 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 Prop SA Basin A (Perv) Hyd. No. 12 -- 10 Year Q (cfs) 0.10 0.09 0.08 90.0 0.04 0.07 0.05 0.03

120 0

Time (min)

—— Hyd No. 12

Time (min)

0.00

1560

1440

1320

1200

1080

960

840

720

900

480

360

240

0.00

0.00

1560

1440

1320

1200

1080

840

720

900

480

360

240

120

0

00.0

—— Hyd No. 12 960

--- Hyd No. 11

--- Hyd No. 13

0.02

0.10

0.01

0.05

0.02

0.01

8

## **Hydrograph Report**

Hydraflow Hydrographs by Intelsolve v9.1

## Hyd. No. 16

Prop SA South (Imp)

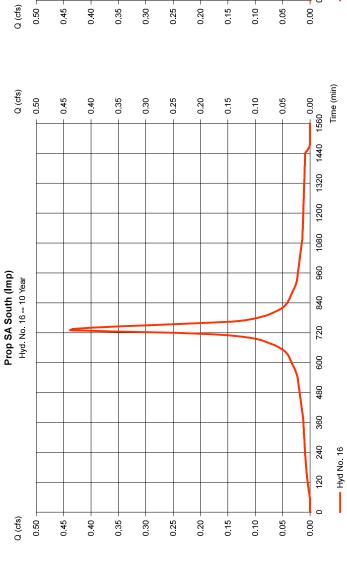
Hydrograph typeSCS RunoffPeak discharge= 0.438 cfsStorm frequency= 10 yrsTime to peak= 730 minTime interval= 5 minHyd. volume= 2,755 cuftDrainage area= 0.150 acHydraulic length= 0 ftBasin Slope= 0.0 %Hydraulic length= 0 ftTo method= USERTime of conc. (Tc)= 10.00 minTotal precip.= 5.33 inDistribution= CustomStorm duration= NOAA Atlas 14 Type-D.cdsShape factor= 285

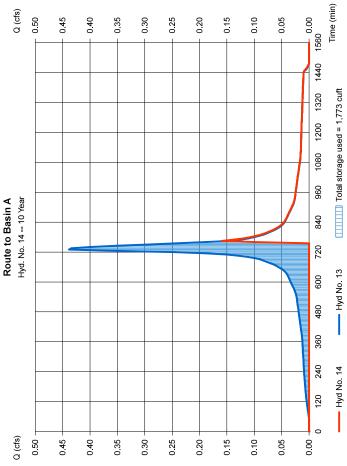
### 31

Thursday, Dec 17, 2020

**Hydrograph Report** 

Hydrographs by Intelsolve v9.1 Thursday, Dec 17, 2020


## Hyd. No. 14


Route to Basin A

Hydrograph type = Reservoir
Storm frequency = 10 yrs
Time interval = 5 min
Inflow hyd. No. = 13 - Prop SA Basin A Total
Reservoir name = AG Basin A

Peak discharge = 0.159 cfs
Time to peak = 765 min
Hyd. volume = 1,101 cuft
Max. Elevation = 13.52 ft
Reservoir name = AG Basin A

Storage Indication method used.





Hydraflow Hydrographs by Intelisolve v9.1

## Hyd. No. 18

Prop SA South Total

= Combine = 10 yrs = 5 min = 16, 17 Hydrograph type Storm frequency Time interval

Peak discharge = 0.438 cfs
Time to peak = 730 min
Hyd. volume = 2,902 cuft
Contrib. drain. area = 0.300 ac

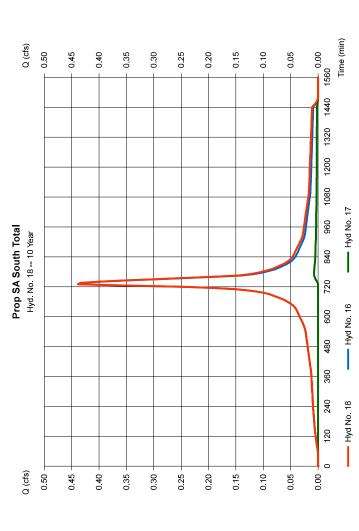
Inflow hyds.

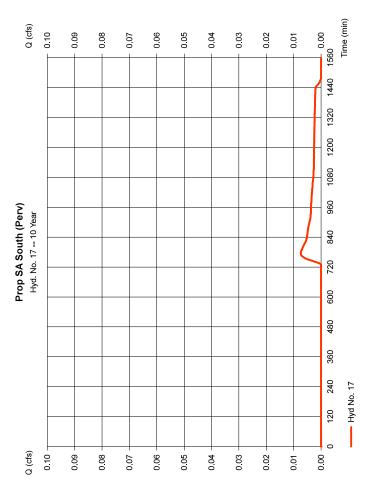
# Hydrograph Report

33

Thursday, Dec 17, 2020

Thursday, Dec 17, 2020 Hydraflow Hydrographs by Intelisolve v9.1


## Hyd. No. 17


Prop SA South (Perv)

= SCS Runoff = 10 yrs = 5 min = 0.150 ac = 0.0 % = USER = 5.33 in = NOAA Atlas 14 Type-D.cds Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip. Storm duration

Peak discharge Time to peak Hyd. volume

= 0.007 cfs = 775 min = 147 cuft = 39 = 0 ft = 10.00 min = Custom = 285 Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor





Hydraflow Hydrographs by Intelisolve v9.1

| Return | Intensity- | Intensity-Duration-Frequency Equation Coefficients (FHA) | Equation Coefficient | s (FHA) |
|--------|------------|----------------------------------------------------------|----------------------|---------|
| (Yrs)  | В          | Q                                                        | 3                    | (N/A)   |
| -      | 39.0824    | 9.5000                                                   | 0.8528               |         |
| 2      | 45.6943    | 10.7000                                                  | 0.8185               |         |
| e      | 0.000      | 0.000                                                    | 0.000                |         |
| 2      | 99.7061    | 14.8000                                                  | 0.9304               |         |
| 10     | 249.7597   | 21.8001                                                  | 1.0961               | 1       |
| 25     | 115.7547   | 14.9000                                                  | 0.8980               |         |
| 50     | 7.3699     | 0.1000                                                   | 0.2544               |         |
| 100    | 403.8513   | 25.1001                                                  | 1.1108               |         |
|        |            |                                                          |                      |         |

File name: TRENTON.idf

## Intensity = B / (Tc + D)^E

| Return |       |       |       |       | Intens | Intensity Values (in/hr) | (in/hr) |       |       |       |       |       |
|--------|-------|-------|-------|-------|--------|--------------------------|---------|-------|-------|-------|-------|-------|
| (Yrs)  | 5 min | 10    | 15    | 20    | 25     | 30                       | 35      | 40    | 45    | 90    | 22    | 09    |
| 1      | 4.00  | 3.10  | 2.55  | 2.18  | 1.91   | 1.70                     | 1.54    | 1.40  | 1.29  | 1.20  | 1.12  | 1.05  |
| 7      | 4.80  | 3.83  | 3.21  | 2.77  | 2.45   | 2.20                     | 2.00    | 1.84  | 1.70  | 1.59  | 1.49  | 1.40  |
| ღ      | 00.00 | 00.00 | 00.00 | 00.00 | 00.00  | 00.00                    | 00.00   | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 |
| 2      | 6.20  | 5.03  | 4.24  | 3.67  | 3.24   | 2.90                     | 2,63    | 2.40  | 2.22  | 2.06  | 1.92  | 1.80  |
| 10     | 6.80  | 5,63  | 4.80  | 4.17  | 3.69   | 3,30                     | 2.98    | 2.72  | 2.50  | 2.31  | 2.14  | 2.00  |
| 25     | 7.89  | 6.45  | 5.47  | 4.76  | 4.23   | 3.80                     | 3.46    | 3.17  | 2.93  | 2.73  | 2.55  | 2.40  |
| 20     | 4.87  | 4.09  | 3.69  | 3.44  | 3.25   | 3.10                     | 2.98    | 2.88  | 2.80  | 2.72  | 2.66  | 2.60  |
| 100    | 9.20  | 7.76  | 69.9  | 5.87  | 5.22   | 4.70                     | 4.27    | 3.91  | 3.60  | 3.33  | 3.10  | 2.90  |
|        |       |       |       |       |        |                          |         |       |       |       |       |       |

Tc = time in minutes. Values may exceed 60.

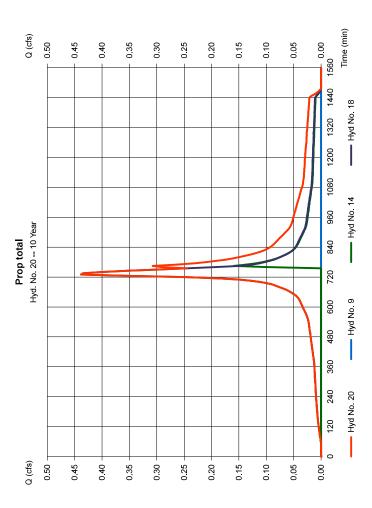
| cean      |  |
|-----------|--|
|           |  |
|           |  |
| О         |  |
|           |  |
| fle name: |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
| ecip      |  |
| 9         |  |
| <u>و</u>  |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |
| Pre       |  |

|                       |       | œ     | Rainfall Precipitation Table (in) | recipitat | ion Tab | e (in) |       |        |
|-----------------------|-------|-------|-----------------------------------|-----------|---------|--------|-------|--------|
| Storm<br>Distribution | 1-yr  | 2-yr  | 3-уг                              | 5-yr      | 10-yr   | 25-yr  | 50-yr | 100-yr |
| SCS 24-hour           | 00'0  | 3.42  | 0.00                              | 0.00      | 5.33    | 6.68   | 0.00  | 9.20   |
| SCS 6-Hr              | 0.00  | 0.00  | 0.00                              | 0.00      | 0.00    | 0.00   | 00.00 | 0.00   |
| Huff-1st              | 0.00  | 00.00 | 0.00                              | 0.00      | 0.00    | 00.00  | 0.00  | 00.00  |
| Huff-2nd              | 00.00 | 00.00 | 00.0                              | 00.0      | 0.00    | 00.00  | 0.00  | 00.00  |
| Huff-3rd              | 00.00 | 00.00 | 00.00                             | 00.0      | 00.00   | 0.00   | 00.00 | 00.00  |
| Huff-4th              | 00.00 | 00.00 | 00.00                             | 00.00     | 00'0    | 00.00  | 00.00 | 00.0   |
| Huff-Indy             | 00.00 | 00'0  | 00.00                             | 00.0      | 00'0    | 00.00  | 00.00 | 00.00  |
| Custom                | 1.25  | 3,42  | 00.00                             | 00.00     | 5.33    | 89.9   | 00.00 | 9.20   |

# Hydrograph Report

Hydraflow Hydrographs by Intelisolve v9.1

Thursday, Dec 17, 2020


34

Hyd. No. 20

Prop total

= Combine = 10 yrs = 5 min = 9, 14, 18 Hydrograph type Storm frequency Time interval Inflow hyds.

Peak discharge = 0.438 cfs
Time to peak = 730 min
Hyd. volume = 4,003 cuft
Contrib. drain. area = 0.000 ac



### WEB SOIL SURVEY MAP



#### MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: Ocean County, New Jersey Survey Area Data: Version 18, Jun 1, 2020 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Jun 26, 2019—Jun 29. 2019 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

#### **Hydrologic Soil Group**

| Map unit symbol           | Map unit name                        | Rating | Acres in AOI | Percent of AOI |
|---------------------------|--------------------------------------|--------|--------------|----------------|
| EveB                      | Evesboro sand, 0 to 5 percent slopes | А      | 0.9          | 100.0%         |
| Totals for Area of Intere | est                                  |        | 0.9          | 100.0%         |

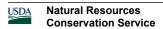
#### **Description**

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

#### **Rating Options**

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified



Tie-break Rule: Higher





# Inlet Area Summary and Average Coefficient (C) Calculations

Project: NorthStar Capital Computed By: JM Job #: 3639-99-001 Checked By: KK

Location: Borough of Point Pleasant Date: 12/8/2020

| Drainage Area | •         |          | •                      |          |          |      | Total Area (acres) |
|---------------|-----------|----------|------------------------|----------|----------|------|--------------------|
|               | Alea (SI) | (O) Oseu | ioi soii sioup B (si ) | (O) Oseu | (O) Osed | (51) | (acres)            |
| ROOF          | 4105      | 0.95     | 0                      |          | 0.95     | 4105 | 0.094              |
| ROOF 2        | 4105      | 0.95     | 0                      |          | 0.95     | 4105 | 0.094              |
| Total         | 8210      | 0.95     | 0                      |          | 0.95     | 8210 | 0.188              |

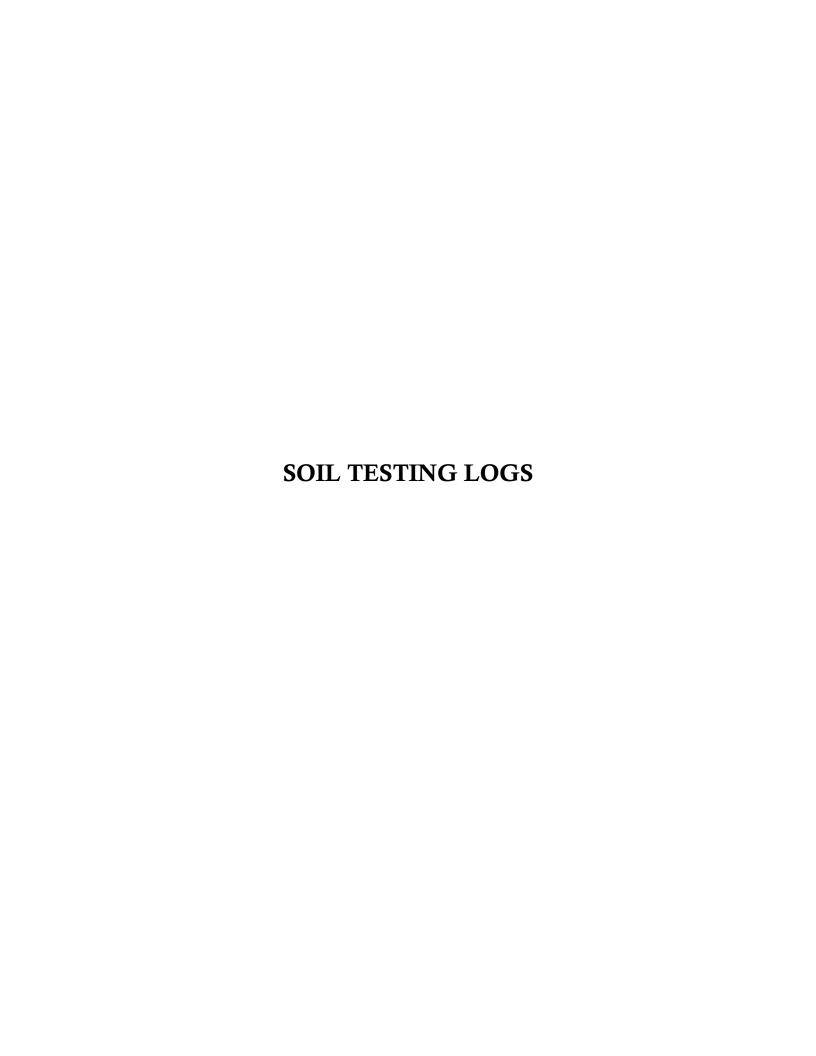


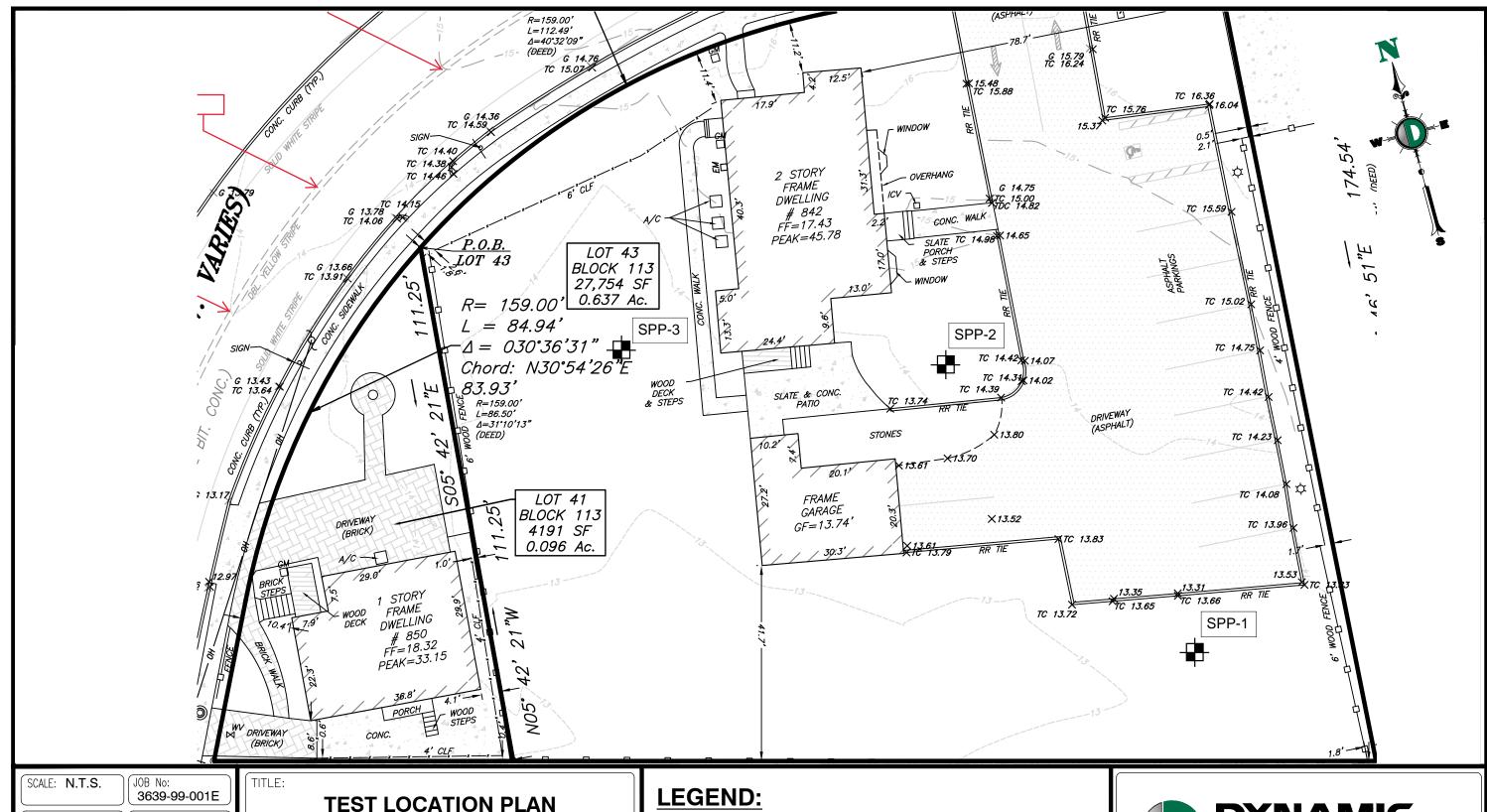
# **Stormwater Collection System Calculations**Project: NorthStar Capital Computed By: JM

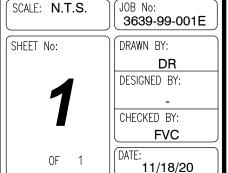
Project: NorthStar Capital Computed By: JM

Job #: 3639-99-001 Checked By: KK

Location: Borough of Point Pleasant Date: 12/8/2020


Design Storm: 25 YR


NOTES:


1) Design method used is Rational Method

2) Refer to Weighted Runoff Coefficient table for calculation of incremental areas and C values

| PIPE   | SECTION  | SUBCATCHMENT<br>AREA | INC  | REMENTAL | CUMULATIVE    |                         | TIME OF<br>CENTRA       |                   | Ι       | PEAK R              | UNOFF                       | PIF          | 'ING INP    | UT          | P                | PING DAT                  | îA                        |
|--------|----------|----------------------|------|----------|---------------|-------------------------|-------------------------|-------------------|---------|---------------------|-----------------------------|--------------|-------------|-------------|------------------|---------------------------|---------------------------|
| FROM   | ТО       | Area (Acres)         | "C"  | AxC Ac   | A x C (acres) | Tc to<br>Inlet<br>(min) | Tc in<br>Pipe<br>(min.) | Final Tc<br>(min) | (In/Hr) | Q to Inlet<br>(CFS) | Q cum.<br>for Pipe<br>(CFS) | Dia.<br>(In) | Length (Ft) | Man.<br>"n" | Slope<br>(ft/ft) | Pipe<br>Capacity<br>(cfs) | Pipe<br>Velocity<br>(fps) |
| ROOF   | UG BASIN | 0.10                 | 0.95 | 0.10     | 0.10          | 10.00                   | 0.89                    | 10.00             | 6.80    | 0.68                | 0.68                        | 8            | 169.0       | 0.010       | 0.0050           | 1.11                      | 3.18                      |
| ROOF 2 | UG BASIN | 0.10                 | 0.95 | 0.10     | 0.10          | 10.00                   | 1.11                    | 10.00             | 6.80    | 0.68                | 0.68                        | 8            | 211.0       | 0.010       | 0.0050           | 1.11                      | 3.18                      |







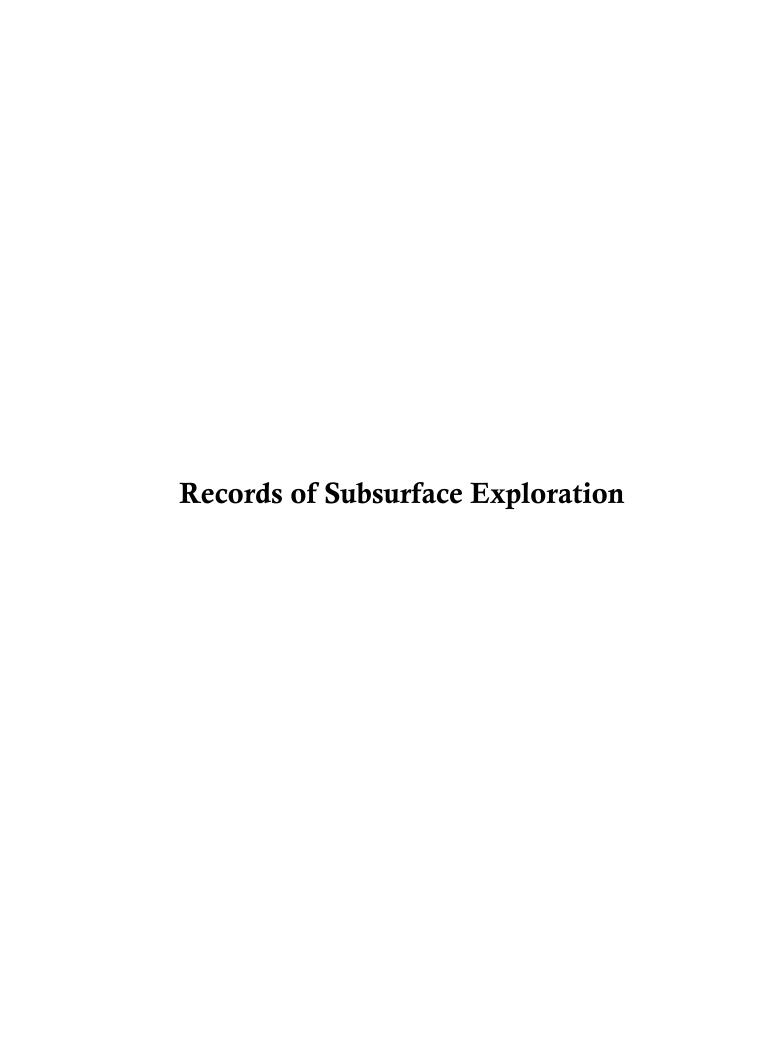
PROJECT: NORTHSTAR CAPITAL, LLC
PROPOSED MULTI-FAMILY DEVELOPMENT

842 & 850 ARNOLD AVENUE BLOCK 113, LOTS 41 & 43

BOROUGH OF POINT PLEASANT, OCEAN COUNTY NEW JERSEY

Rev. # 0 DEC Client Code: **3639** 




APPROXIMATE LOCATION OF SOIL PROFILE PIT

### NOTES:

- 1. THIS PLAN IS NOT FOR CONSTURCTION AND WAS PREPARED TO ILLUSTRATE TEST LOCATIONS ONLY AND MAY NOT REFLECT THE MOST CURRENT REVISION OF THE BASE PLAN
- 2. THIS PLAN HAS BEEN PREPARED BASED ON A JULY 24, 2020 BOUNDARY & TOPORGRAPHIC SURVEY PREPARED BY INSITE SURVEYING



245 Main Street - Suite 110 Chester, NJ 07930 T: 908.879.7095 - F: 908.879.0222 www.dynamic-earth.com





### SOIL PROFILE PIT LOG

Page <u>1</u> of <u>1</u>

Soil Profile Pit: SPP-1

| Project:                 | Proposed Multi-Fa                     | mily Developm | ent                    |                         |              |               |                |                          | Project No.:         3639-99-001E           Client:         NorthStar Capital, LLC |                           |         |                          |             |            |              |               |                         |          |          |          |             |               |            |                          |
|--------------------------|---------------------------------------|---------------|------------------------|-------------------------|--------------|---------------|----------------|--------------------------|------------------------------------------------------------------------------------|---------------------------|---------|--------------------------|-------------|------------|--------------|---------------|-------------------------|----------|----------|----------|-------------|---------------|------------|--------------------------|
|                          |                                       |               | h of Point Pleasant, C | cean County, Ne         | w Jersey     |               | 11/17/20       |                          |                                                                                    | Groundwater Data Depth EL |         |                          |             |            |              |               |                         |          |          |          |             |               |            |                          |
| Surface Ele              |                                       | 13.4<br>9.3   | Date Started:          |                         |              |               | 11/17/20       |                          | Groundwate                                                                         | ter Data                  |         |                          |             |            |              |               |                         |          |          | Groun    | dwater Com  | ments         |            |                          |
|                          | n Depth (ft):                         | 9.3<br>SWM    | Date Completed:        |                         |              |               | Richardson     |                          |                                                                                    |                           |         |                          | (ft)<br>NE  |            |              | (msl          | 1                       |          |          |          |             |               |            |                          |
| Proposed L<br>Excavation |                                       | SWW           |                        | Logged by<br>Contractor | <i>/</i> :   |               | nyweight LLC   |                          | Seepage<br>Groundwater                                                             |                           |         |                          | NE<br>NE    |            |              |               |                         | ł        |          |          |             |               |            |                          |
| / Test                   | Visual Observation                    | 1             |                        |                         |              |               | ASE 580L       |                          |                                                                                    |                           |         |                          | NE          |            |              |               |                         |          |          |          |             |               |            |                          |
| Method:                  | I                                     |               |                        | Rig Type                | ž:           |               |                |                          | Seasonal High Groun                                                                | indwater                  |         |                          |             |            |              |               |                         |          |          |          |             |               |            |                          |
| DEPTH (IN                | ) COLOR                               | 80            | DIL TEXTURE            |                         | COARSE FRA   | AGMENTS (%    | ١              |                          | STRUCTURE                                                                          |                           | WATER   |                          | CONSISTENCY |            | BOUN         | DARY          | ROOTS                   |          | MOTTLING |          |             | SAMPLING      | •          | LAB RESULTS              |
| DE1 111 (III             | , GOLON                               |               | AL TEXTORE             |                         | OOALOE 110   | NOME INTO (70 | ,              | Shape                    | Grade                                                                              | Size                      | CONTENT | Resistance to<br>Rupture | Stickiness  | Plasticity | Distinctness | Topography    | Roote                   | Quantity | Size     | Contrast | Туре        | Depth<br>(in) | No.        | EAD NEGOETO              |
|                          |                                       |               |                        | GRAVEL                  | COBBLES      | STONES        | BOULDERS       |                          |                                                                                    |                           |         |                          |             |            |              |               |                         |          |          |          |             |               |            |                          |
| 0 - 14                   | TOPSOIL<br>Brown<br>(7.5YR 4/2)       |               | LOAM                   | 0                       | 0            | 0             | 0              | GRANNULAR/<br>SPHERIODAL | WEAK                                                                               | MEDIUM                    | MOIST   | VERY FRIABLE             | NONSTICKY   | NONPLASTIC | CLEAR <2.5"  | <b>SMOOTH</b> | CMN (20% COARSE<br>MAX) | NONE     |          |          | BAG         | 3             | S-1        |                          |
|                          |                                       |               |                        | GRAVEL                  | COBBLES      | STONES        | BOULDERS       | SINGLE GRAIN             | STRUCTUR                                                                           | RELESS                    |         |                          |             |            |              |               |                         |          |          |          |             |               |            |                          |
| 14 - 37                  | Dark Yellowish<br>Brown<br>(10YR 4/6) |               | SAND                   | <5                      | 0            | 0             | 0              |                          |                                                                                    |                           | MOIST   | LOOSE                    | NONSTICKY   | NONPLASTIC | CLEAR <2.5"  | WAVY          | FEW (5% MAX) MEDIUM     | NONE     |          |          | BAG         | 20            | S-2        |                          |
|                          |                                       |               |                        | GRAVEL                  | COBBLES      | STONES        | BOULDERS       | SINGLE GRAIN             | STRUCTUR                                                                           | RELESS                    |         |                          |             |            |              |               |                         |          |          |          |             |               |            |                          |
| 37 - 111                 | Yellowish Brown<br>(10YR 5/6)         |               | SAND                   | <5                      | 0            | 0             | 0              |                          |                                                                                    |                           | MOIST   | LOOSE                    | NONSTICKY   | NONPLASTIC |              |               | NONE                    | NONE     |          |          | BAG<br>TUBE | 80            | S-3<br>T-1 | A > 20 iph<br>B > 20 iph |
|                          |                                       |               |                        |                         |              |               |                |                          |                                                                                    |                           |         |                          |             |            |              |               |                         |          |          |          |             |               |            |                          |
|                          |                                       |               |                        |                         |              |               |                |                          |                                                                                    |                           |         |                          |             |            |              |               |                         |          |          |          |             |               |            |                          |
|                          |                                       |               |                        |                         |              |               |                | -                        |                                                                                    |                           |         |                          |             |            |              |               |                         |          |          |          |             |               |            |                          |
|                          |                                       |               |                        |                         |              |               |                | _                        |                                                                                    |                           |         |                          |             |            |              |               |                         |          |          |          |             |               |            |                          |
|                          |                                       |               |                        |                         |              |               |                |                          |                                                                                    |                           |         |                          |             |            |              |               |                         |          |          |          |             |               |            |                          |
| Additiona                | Remarks: SPP                          | 1 was termin  | ated approximately     | rat 9.3 feet he         | low around s | urface due    | to continous d | ry cave-in               |                                                                                    |                           |         |                          |             |            |              |               |                         |          |          |          |             |               |            |                          |

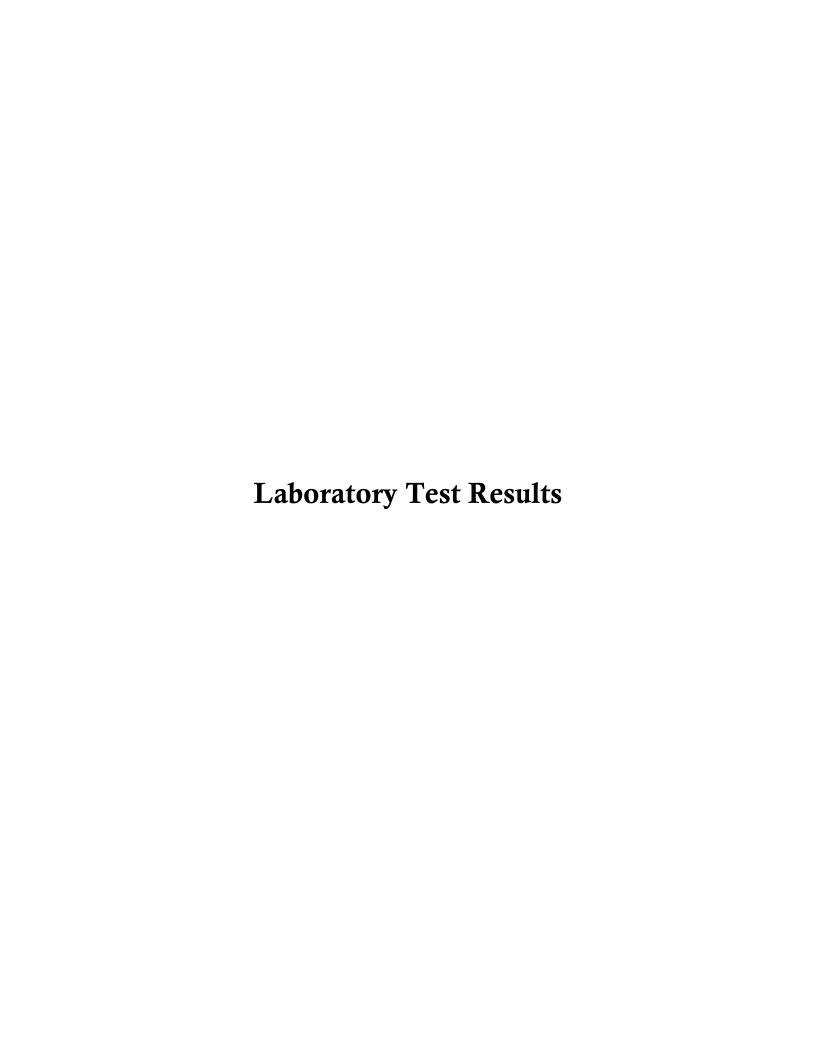


#### SOIL PROFILE PIT LOG

Soil Profile Pit: SPP- 2
Page 1 of 1

| roject:                   | Proposed Multi-Fami<br>842 & 850 Arnold Ave |                                |                |              |              |                |                          |                  |            |         |                          |             |                     | 3639-99-001E<br>NorthStar Capital, | LLC        |                  |              |          |          |           |             |               |            |                          |
|---------------------------|---------------------------------------------|--------------------------------|----------------|--------------|--------------|----------------|--------------------------|------------------|------------|---------|--------------------------|-------------|---------------------|------------------------------------|------------|------------------|--------------|----------|----------|-----------|-------------|---------------|------------|--------------------------|
| Surface Elev              |                                             |                                | Journy, Nev    |              |              |                |                          | C                | nator Data |         |                          | Depth       |                     |                                    | El.        |                  |              |          |          | · · · · · | iwater Comn | t-            |            |                          |
| Termination               |                                             | 8.3 Date Completed:            |                |              |              | 11/17/20       |                          | Groundy          | vater Data |         |                          | (ft)        |                     |                                    | (msl)      |                  |              |          |          | Ground    | iwater Comn | ients         |            |                          |
| Proposed Lo<br>Excavation | cation:                                     | SWM                            | Logged by      |              |              | Richardson     |                          | Seepage          |            |         |                          | NE          |                     |                                    | -          |                  |              |          |          |           |             |               |            |                          |
| / Test                    | Visual Observation                          |                                | Contractor:    |              |              | nyweight LLC   |                          | Groundwater      |            |         |                          | NE          |                     |                                    |            |                  |              |          |          |           |             |               |            |                          |
| Method:                   |                                             |                                | Rig Type       | :            | C            | ASE 580L       |                          | Seasonal High Gr | oundwater  |         |                          | NE          |                     |                                    | -          |                  |              |          |          |           |             |               |            |                          |
| DEPTH (IN)                | COLOR                                       | SOIL TEXTURE                   |                | COARSE FRA   | CMENTS (%)   |                |                          | STRUCTURE        |            | WATER   |                          | CONSISTENCY |                     | BOUN                               | IDARY      | ROOT             | re           |          | MOTTLING |           | :           | SAMPLING      |            | LAB RESULTS              |
| DE1 111 (IIV)             | OGEGIN                                      | OOL TEXTORE                    |                | OUNIOE I IO  | tomento (A)  | '              | Shape                    | Grade            | Size       | CONTENT | Resistance to<br>Rupture | Stickiness  | Plasticity          | Distinctness                       | Topography |                  |              | Quantity | Size     | Contrast  | Туре        | Depth<br>(in) | No.        | LAD NEGOETO              |
|                           |                                             |                                | GRAVEL         | COBBLES      | STONES       | BOULDERS       |                          |                  |            |         |                          |             |                     |                                    |            |                  |              |          |          |           |             |               |            |                          |
| 0 - 6                     | TOPSOIL<br>Brown<br>(7.5YR 4/2)             | LOAM                           | 0              | 0            | 0            | 0              | GRANNULAR/<br>SPHERIODAL | WEAK             | MEDIUM     | MOIST   | VERY FRIABLE             | NONSTICKY   | NONPLASTIC          | CLEAR <2.5"                        | SMOOTH     | CMN (20%<br>MAX) | VERY<br>FINE | NONE     |          |           | BAG         | 3             | S-1        |                          |
|                           |                                             |                                | GRAVEL         | COBBLES      | STONES       | BOULDERS       | SINGLE GRAIN             | STRUCT           | URELESS    |         |                          |             |                     |                                    |            |                  |              |          |          |           |             |               |            |                          |
| 6 - 50                    | Dark Yellowish<br>Brown<br>(10YR 4/6)       | LOAMY SAND                     | <5             | 0            | 0            | 0              |                          |                  |            | MOIST   | LOOSE                    | NONSTICKY   | SLIGHTLY<br>PLASTIC | CLEAR <2.5"                        | WAVY       | NONE             |              | NONE     |          |           | BAG<br>TUBE | 24<br>40      | S-2<br>T-1 |                          |
|                           |                                             |                                | GRAVEL         | COBBLES      | STONES       | BOULDERS       | SINGLE GRAIN             | STRUCT           | URELESS    |         |                          |             |                     |                                    |            |                  |              |          |          |           |             |               |            |                          |
| 50 - 100                  | Yellowish Brown<br>(10YR 5/6)               | SAND                           | <5             | 0            | 0            | 0              | -                        |                  |            | MOIST   | LOOSE                    | NONSTICKY   | NONPLASTIC          |                                    |            | NONE             |              | NONE     |          |           | BAG<br>TUBE | 100           | S-3<br>T-2 | A > 20 lph<br>B > 20 lph |
|                           |                                             |                                |                |              |              |                |                          |                  |            |         |                          |             |                     |                                    |            |                  |              |          |          |           |             |               |            |                          |
|                           |                                             |                                |                |              |              |                |                          |                  |            |         |                          |             |                     |                                    |            |                  |              |          |          |           |             |               |            |                          |
|                           |                                             |                                |                |              |              |                | -                        |                  |            |         |                          |             |                     |                                    |            |                  |              |          |          |           |             |               |            |                          |
|                           |                                             |                                |                |              |              |                |                          |                  |            |         |                          |             |                     |                                    |            |                  |              |          |          |           |             |               |            |                          |
|                           |                                             |                                |                |              |              |                |                          |                  |            |         |                          |             |                     |                                    |            |                  |              |          |          |           |             |               |            |                          |
|                           |                                             |                                |                |              |              |                |                          |                  |            |         |                          |             |                     |                                    |            |                  |              |          |          |           |             |               |            |                          |
| Additional                | Remarks: SPP-2                              | was terminated approximately a | t 8.3 feet bel | ow ground su | urface due t | o continous di | y cave-in.               |                  |            |         |                          |             |                     |                                    |            |                  |              |          |          |           | l           |               |            |                          |




#### SOIL PROFILE PIT LOG

Page <u>1</u> of <u>1</u>

Soil Profile Pit: SPP-3

| roject:                  | Proposed Multi-Family                 | y Development                                           |                |           |            |              |                          |                   |            |         | Project No.:             |             |                     | 3639-99-001E       |            |                            |          |          |          |             |               |            |                          |
|--------------------------|---------------------------------------|---------------------------------------------------------|----------------|-----------|------------|--------------|--------------------------|-------------------|------------|---------|--------------------------|-------------|---------------------|--------------------|------------|----------------------------|----------|----------|----------|-------------|---------------|------------|--------------------------|
| ocation:<br>urface Elevi |                                       | nue, Borough of Point Pleasant, 6<br>13.4 Date Started: | cean County, N | w Jersey  |            | 11/17/20     |                          | I                 |            | 1       | Client:                  | Depth       |                     | NorthStar Capital, | EL.        |                            |          |          |          |             |               |            |                          |
| ermination I             |                                       | 8.0 Date Completed                                      |                |           |            | 11/17/20     |                          | Groundw           | vater Data |         |                          | (ft)        |                     |                    | (msl)      |                            |          |          | Ground   | water Comm  | ents          |            |                          |
| roposed Lo               | cation:                               | SWM                                                     | Logged b       |           |            | . Richardson |                          | Seepage           |            |         |                          | NE          |                     |                    | -          |                            |          |          |          |             |               |            |                          |
| xcavation<br>/ Test      | Visual Observation                    |                                                         | Contracto      |           |            | nyweight LLC |                          | Groundwater       |            |         |                          | NE          |                     |                    |            |                            | 4        |          |          |             |               |            |                          |
| Method:                  |                                       |                                                         | Rig Typ        | e:        |            | CASE 580L    |                          | Seasonal High Gro | oundwater  |         |                          | NE          |                     |                    | -          |                            |          |          |          |             |               |            |                          |
| DEPTH (IN)               | COLOR                                 | SOIL TEXTURE                                            |                | COARSE ER | AGMENTS (% | a            |                          | STRUCTURE         |            | WATER   |                          | CONSISTENCY |                     | BOUN               | DARY       | ROOTS                      |          | MOTTLING |          | s           | SAMPLING      |            | LAB RESULTS              |
|                          |                                       |                                                         |                |           |            | ,            | Shape                    | Grade             | Size       | CONTENT | Resistance to<br>Rupture | Stickiness  | Plasticity          | Distinctness       | Topography |                            | Quantity | Size     | Contrast | Type        | Depth<br>(in) | No.        |                          |
|                          |                                       |                                                         | GRAVEL         | COBBLES   | STONES     | BOULDERS     |                          |                   |            |         |                          |             |                     |                    |            |                            |          |          |          |             |               |            |                          |
| 0 - 12                   | TOPSOIL<br>Brown<br>(7.5YR 4/2)       | LOAM                                                    | 0              | 0         | 0          | 0            | GRANNULAR/<br>SPHERIODAL | WEAK              | MEDIUM     | MOIST   | VERY FRIABLE             | NONSTICKY   | NONPLASTIC          | CLEAR <2.5"        | SMOOTH     | CMN (20% VERY<br>MAX) FINE | NONE     |          |          | BAG         | 3             | S-1        |                          |
|                          |                                       |                                                         | GRAVEL         | COBBLES   | STONES     | BOULDERS     | SINGLE GRAIN             | STRUCTI           | URELESS    |         |                          |             |                     |                    |            |                            |          |          |          |             |               |            |                          |
| 12 - 51                  | Dark Yellowish<br>Brown<br>(10YR 4/6) | LOAMY SAND                                              | <5             | 0         | 0          | 0            |                          |                   |            | MOIST   | LOOSE                    | NONSTICKY   | SLIGHTLY<br>PLASTIC | CLEAR <2.5"        | WAVY       | NONE                       | NONE     |          |          | BAG<br>TUBE | 38            | S-2<br>T-1 |                          |
|                          |                                       |                                                         | GRAVEL         | COBBLES   | STONES     | BOULDERS     | SINGLE GRAIN             | STRUCTI           | URELESS    |         |                          |             |                     |                    |            |                            |          |          |          |             |               |            |                          |
| 51 - 96                  | Yellowish Brown<br>(10YR 5/6)         | SAND                                                    | <5             | 0         | 0          | 0            |                          |                   |            | MOIST   | LOOSE                    | NONSTICKY   | NONPLASTIC          |                    |            | NONE                       | NONE     |          |          | BAG<br>TUBE | 90            | S-3<br>T-2 | A > 20 iph<br>B > 20 iph |
|                          |                                       |                                                         |                |           |            |              |                          |                   |            |         |                          |             |                     |                    |            |                            |          |          |          |             |               |            |                          |
|                          |                                       |                                                         |                |           |            |              |                          |                   |            |         |                          |             |                     |                    |            |                            |          |          |          |             |               |            |                          |
|                          |                                       |                                                         |                |           |            |              |                          |                   |            |         |                          |             |                     |                    |            |                            |          |          |          |             |               |            |                          |
|                          |                                       |                                                         |                |           |            |              |                          |                   |            |         |                          |             |                     |                    |            |                            |          |          |          |             |               |            |                          |
|                          |                                       |                                                         |                |           |            |              |                          |                   |            |         |                          |             |                     |                    |            |                            |          |          |          |             |               |            |                          |
|                          |                                       |                                                         |                |           |            |              |                          |                   |            |         |                          |             |                     |                    |            |                            |          |          |          |             |               |            |                          |
|                          |                                       |                                                         |                |           |            |              |                          |                   |            |         |                          |             |                     |                    |            |                            |          |          |          |             |               |            |                          |
|                          |                                       |                                                         |                |           |            |              |                          |                   |            |         |                          |             |                     |                    |            |                            |          |          |          |             |               |            |                          |
|                          |                                       |                                                         |                |           |            |              |                          |                   |            |         |                          |             |                     |                    |            |                            |          |          |          |             |               |            |                          |
|                          |                                       |                                                         |                |           |            |              | 1                        |                   |            |         |                          |             |                     |                    |            | 1                          |          |          |          | 1           |               | 1          |                          |

Additional Remarks: Debris encountered approximately at 8.0 feet below dreund surface. Debris included brick. SPP-3 was terminated approximately at 8.0 feet below ground surface due to continous dry cave-in.



Job Number: 3639-99-001E
Project: Proposed Residual Building

| Sample ID:    | Boring/T      | est Pit No.:                  | 1 Sam                                       | ple No.:       | 1                       | Depth:          | 6.7 ft        | Client: NorthStar Capital                       |
|---------------|---------------|-------------------------------|---------------------------------------------|----------------|-------------------------|-----------------|---------------|-------------------------------------------------|
| MUNICIPALI    | ITY           | Point Pleasa                  | ant                                         | BLOCK          | 113                     | LOT             | 41&43         | Lab Tech: Sam                                   |
| 1. Test Numb  | ber           | 1                             | Replicate (letter)                          | A              | _Date Colle             | ected           | 11/18/2020    |                                                 |
| 2. Material T | ested:        |                               | Fill X                                      | Test in N      | ative Soil-Ind          | dicate Depth    |               |                                                 |
| 3. Type of S  | ample:        | x                             | Undisturbed                                 |                | _Disturbed              |                 |               |                                                 |
| 4. Sample D   | imensions:    |                               | Inside Radius of Sar<br>Length of Sample, L |                | R, in cm                | 1.905<br>3.50   |               |                                                 |
| 5. Bulk Dens  | sity Determi  | nation (Distur                | bed Samples Only):                          | N/A            |                         |                 |               |                                                 |
| 6. Sample W   | Veight (Wt. 7 | Гube Contain                  | ing Sample-Wt. of Er                        | mpty Tube),    | grams                   |                 |               | Wt. of Tube Containing Sample Wt. of Empty Tube |
| 7. Sample V   | olume (L x 2  | 2.54 cm./inch                 | x 3.14R2), cc.                              |                |                         | 101.3028        |               |                                                 |
| 8. Bulk Dens  | sity (Sample  | Wt./Sample                    | Volume), grams/cc.                          |                |                         |                 | > 1.2         |                                                 |
| 9. Standpipe  | e Used:       | х                             | No                                          | Yes, Indi      | cate Interna            | l Radius, cm    | . N/A         |                                                 |
| 10. Height of | f Water Lev   | el Above Rim                  | of Test Basin, in inc                       | hes:           |                         |                 |               |                                                 |
|               |               | inning of Eac<br>of Each Test | h Test Interval, H1<br>t Interval, H2       | 5.50<br>4.50   |                         |                 |               |                                                 |
| 11. Rate of V | Water Level   | Drop (Add a                   | dditional lines if need                     | led):          |                         |                 |               |                                                 |
|               |               | art of Test<br>erval, T1      | Time End of Test<br>Interval T2             |                | h of Test<br>T, Minutes |                 |               |                                                 |
|               | 0:0           | 00:00                         | 0:00:29                                     | С              | ).49                    |                 |               |                                                 |
|               | 0:0           | 00:00                         | 0:00:25                                     | C              | ).42                    |                 |               |                                                 |
|               | 0:0           | 00:00                         | 0:00:25                                     | C              | ).42                    |                 |               |                                                 |
| 12. Calculati | ion of Perme  | eability:                     | K, (in/hr) = 60 min/h                       | r x r2/R2 x L( | (in)/T(min) x           | J<br>In (H1/H2) | T= <u>0.4</u> | 12                                              |
|               | K =           | > 20                          | Classific                                   | cation:        | K5                      |                 |               |                                                 |
| 13. Defects i | in the Samp   | le (Check ap                  | propriate items):                           |                |                         |                 |               |                                                 |
|               | X             | NONE                          |                                             |                |                         |                 |               |                                                 |
|               |               | Soil/Tube Co                  | ntactLarg                                   | e Gravel       |                         | _ Large Roo     | ts            |                                                 |
|               |               | Dry Soil                      | Smearing                                    |                | Compac                  | tion            |               |                                                 |
|               |               | Other - Spec                  | ify                                         |                |                         |                 |               |                                                 |

\_\_\_\_\_ Soil/Tube Contact \_\_\_\_\_Large Gravel \_\_\_\_\_ Large Roots \_\_\_\_ Dry Soil \_\_\_\_\_Smearing \_\_\_\_ Compaction

\_\_\_ Other - Specify \_\_\_

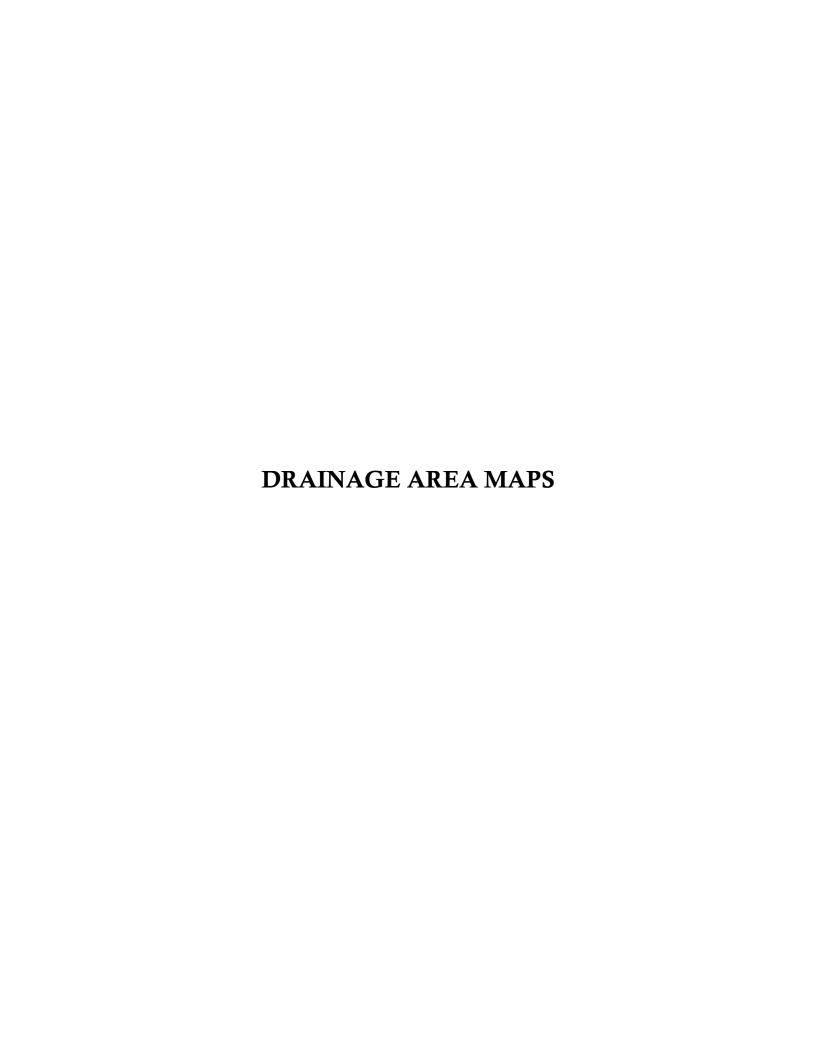
**Tube Permeameter Test Data** Job Number: 3639-99-001E Project: Proposed Residual Building Sample ID Boring/Test Pit No.: 1 Sample No.: 1 Depth: 6.7 ft Client: NorthStar Capital Lab Tech: Sam MUNICIPALITY Point Pleasant **BLOCK** 113 LOT 41&43 B Date Collected 2 Replicate (letter) 11/18/2020 1. Test Number 2. Material Tested: Fill \_\_\_\_X \_\_\_ Test in Native Soil-Indicate Depth x Undisturbed 3. Type of Sample: Disturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 5. Bulk Density Determination (Disturbed Samples Only): N/A 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams Wt. of Tube Containing Sample Wt. of Empty Tube 108.5387 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. > 1.2 Yes, Indicate Internal Radius, cm. N/A 9. Standpipe Used: x No 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 0:00:00 0:00:22 0.37 0:00:21 0.36 0:00:00 0:00:00 0:00:27 0.45 12. Calculation of Permeability: K, (in/hr) = 60 min/hr x r2/R2 x L(in)/T(min) x ln (H1/H2) T= 0.45 Classification: > 20 13. Defects in the Sample (Check appropriate items): \_\_\_x\_\_NONE

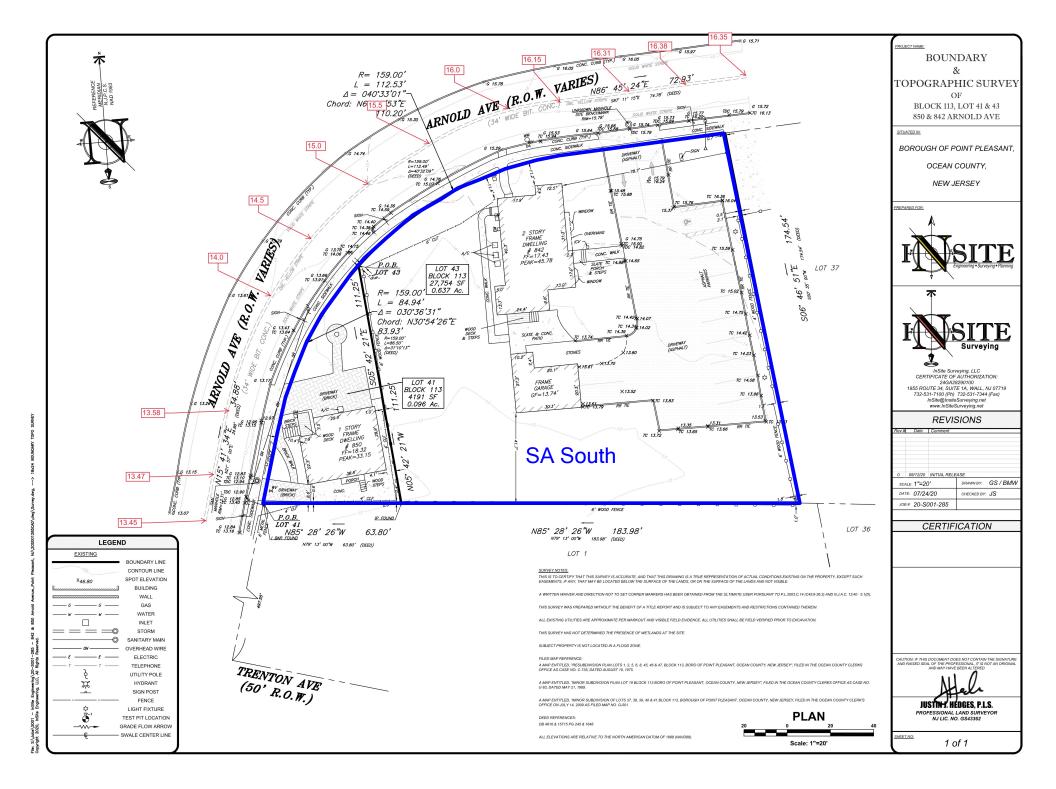
**Job Number:** 3639-99-001E Project: Proposed Residual Building
Client: NorthStar Capital

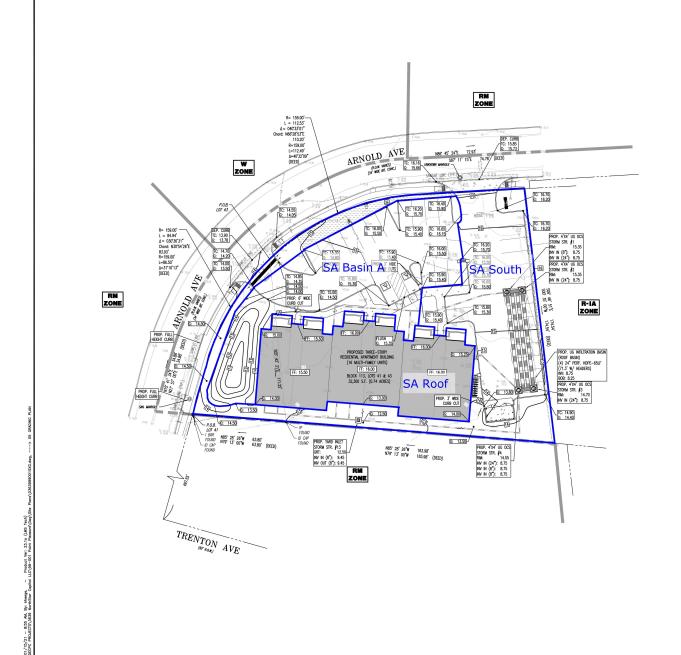
| Sample ID Bo    | ring/Test Pit No.:                       | 2 Sampl                                         | e No.: 2                               | Depth:         | 8.3 ft     | Project: Proposed Residual Building Client: NorthStar Capital |
|-----------------|------------------------------------------|-------------------------------------------------|----------------------------------------|----------------|------------|---------------------------------------------------------------|
| MUNICIPALITY    | Point Pleas                              | ant                                             | BLOCK 113                              | LOT            | 41&43      | Lab Tech: Sam                                                 |
| 1. Test Number  | r <u>2</u>                               | Replicate (letter)                              | ADate Col                              | llected        | 11/18/2020 |                                                               |
| 2. Material Tes | sted:                                    | Fill X                                          | Test in Native Soil-I                  | Indicate Depth | 1          |                                                               |
| 3. Type of San  | nple: x                                  | Undisturbed                                     | Disturbed                              | d              |            |                                                               |
| 4. Sample Dim   |                                          | Inside Radius of Samp<br>Length of Sample, L, i |                                        | 1.905<br>3.50  |            |                                                               |
| 5. Bulk Density | y Determination (Di                      | sturbed Samples Only)                           | ): N/A                                 |                |            |                                                               |
| 6. Sample Wei   | ight (Wt. Tube Cont                      | taining Sample-Wt. of I                         | Empty Tube), grams                     |                | •          | Wt. of Tube Containing Sample Wt. of Empty Tube               |
| 7. Sample Volu  | ume (L x 2.54 cm./i                      | nch x 3.14R2), cc.                              |                                        | 101.3028       | •          | W. of Empty Tube                                              |
| 8. Bulk Density | y (Sample Wt./Sam                        | ple Volume), grams/cc                           |                                        |                | > 1.2      |                                                               |
| 9. Standpipe U  | Jsed: x                                  | No                                              | Yes, Indicate Interr                   | nal Radius, cm | n. N/A     |                                                               |
| 10. Height of V | Vater Level Above                        | Rim of Test Basin, in ir                        | nches:                                 |                |            |                                                               |
|                 | he Beginning of Ea<br>he End of Each Tes | ch Test Interval, H1<br>st Interval, H2         | 5.50<br>4.50                           |                |            |                                                               |
| 11. Rate of Wa  | ater Level Drop (Ad                      | d additional lines if nee                       | eded):                                 |                |            |                                                               |
| Ti              | me, Start of Test<br>Interval, T1        | Time End of Test<br>Interval T2                 | Length of Test<br>Interval, T, Minutes | S              |            |                                                               |
|                 | 0:00:00                                  | 00:34.9                                         | 0.58                                   |                |            |                                                               |
|                 | 0:00:00                                  | 00:38.0                                         | 0.63                                   |                |            |                                                               |
|                 | 0:00:00                                  | 0:00:31                                         | 0.52                                   |                |            |                                                               |
|                 |                                          |                                                 |                                        |                |            |                                                               |
| 12. Calculation | of Permeability:                         | K, (in/hr) = 60 min/hr x                        | r2/R2 x L(in)/T(min)                   | x In (H1/H2)   | T= 0.5     | 2                                                             |
| K =             | > 20                                     | Classifica                                      | tion: K5                               |                |            |                                                               |
| 13. Defects in  | the Sample (Check                        | appropriate items):                             |                                        |                |            |                                                               |
|                 | x NONE                                   |                                                 |                                        |                |            |                                                               |
|                 | Soil/Tube C                              | ontactLarge                                     | Gravel                                 | Large Ro       | oots       |                                                               |
|                 | Dry Soil                                 | Smearing _                                      | Comp                                   | paction        |            |                                                               |
|                 | Other - Spe                              | cify                                            |                                        |                |            |                                                               |

\_\_\_\_\_ Soil/Tube Contact \_\_\_\_\_Large Gravel \_\_\_\_\_ Large Roots \_\_\_\_ Dry Soil \_\_\_\_\_Smearing \_\_\_\_ Compaction

\_\_ Other - Specify \_\_\_


Job Number: 3639-99-001E Project: Proposed Residual Building Sample ID Boring/Test Pit No.: 2 Sample No.: 2 Depth: 8.3 ft Client: NorthStar Capital Lab Tech: Sam MUNICIPALITY Point Pleasant **BLOCK** 113 LOT 41&43 B Date Collected 2 Replicate (letter) 11/18/2020 1. Test Number X Test in Native Soil-Indicate Depth 2. Material Tested: Fill x Undisturbed 3. Type of Sample: Disturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 5. Bulk Density Determination (Disturbed Samples Only): N/A 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams Wt. of Tube Containing Sample Wt. of Empty Tube 101.3028 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. > 1.2 Yes, Indicate Internal Radius, cm. N/A 9. Standpipe Used: x No 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 0:00:00 00:42.0 0.70 00:43.0 0.72 0:00:00 0:00:00 0:00:40 0.67 12. Calculation of Permeability: K, (in/hr) = 60 min/hr x  $r2/R2 \times L(in)/T(min) \times ln (H1/H2)$  T= 0.67 Classification: > 20 K5 13. Defects in the Sample (Check appropriate items): \_\_\_x\_\_NONE


Job Number: 3639-99-001E Project: Proposed Residual Building Client: NorthStar Capital


| Sample ID     | Boring/Te    | est Pit No.:            | 3                                  | Sample       | e No.:       | 2                       | Depth:        | 7.5 ft        | Client: NorthStar Capital Lab Tech: Sam         |
|---------------|--------------|-------------------------|------------------------------------|--------------|--------------|-------------------------|---------------|---------------|-------------------------------------------------|
| MUNICIPAL     | LITY         | Point Pleas             | sant                               |              | BLOCK        | 113                     | _LOT          | 41&43         | Lab rech. Sam                                   |
| 1. Test Num   | nber         | 1                       | Replicate (le                      | tter)        | Α            | _ Date Colle            | ected         | 11/18/2020    |                                                 |
| 2. Material   | Tested:      |                         | Fill _                             | Х            | Test in Na   | ative Soil-Ir           | ndicate Depth |               |                                                 |
| 3. Type of S  | Sample:      | Х                       | Undisturbed                        | -            |              | Disturbed               | I             |               |                                                 |
| 4. Sample [   | Dimension    |                         | Inside Radiu<br>Length of Sa       |              |              | R, in cm                | 1.905<br>3.50 |               |                                                 |
| 5. Bulk Den   | nsity Deterr | mination (Di            | sturbed Sam                        | ples Only)   | : N/A        |                         |               |               |                                                 |
| 6. Sample V   | Weight (Wt   | t. Tube Con             | taining Samp                       | le-Wt. of E  | mpty Tube    | e), grams               |               |               | Wt. of Tube Containing Sample Wt. of Empty Tube |
| 7. Sample \   | Volume (L    | x 2.54 cm./i            | inch x 3.14R2                      | !), cc.      |              |                         | 101.3028      |               |                                                 |
| 8. Bulk Den   | nsity (Samp  | ole Wt./Sam             | iple Volume),                      | grams/cc.    |              |                         |               | > 1.2         |                                                 |
| 9. Standpip   | e Used:      | Х                       | No _                               |              | Yes, Indi    | icate Interna           | al Radius, cm | . N/A         |                                                 |
| 10. Height of | of Water Le  | evel Above              | Rim of Test E                      | Basin, in in | ches:        |                         |               |               |                                                 |
|               |              |                         | ich Test Interv<br>st Interval, H2 |              | 5.50<br>4.50 |                         |               |               |                                                 |
| 11. Rate of   | Water Lev    | vel Drop (Ad            | ld additional li                   | nes if nee   | ded):        |                         |               |               |                                                 |
|               |              | art of Test<br>rval, T1 | Time End<br>Interva                |              |              | h of Test<br>T, Minutes |               |               |                                                 |
|               | 0:00         | 0:00                    | 00:44                              | .5           | 0            | ).74                    |               |               |                                                 |
|               | 0:00         | 0:00                    | 00:47                              | '.2          | 0            | ).79                    |               |               |                                                 |
|               | 0:00         | 0:00                    | 0:00:                              | 52           | 0            | ).87                    |               |               |                                                 |
|               |              |                         |                                    |              |              |                         |               |               |                                                 |
| 12. Calculat  | tion of Per  | meability:              | K, (in/hr) = 6                     | 0 min/hr x   | r2/R2 x L(   | (in)/T(min) x           | k In (H1/H2)  | T= <u>0.8</u> | 7                                               |
| ŀ             | K =          | > 20                    |                                    | lassificat   | ion:         | K5                      |               |               |                                                 |
| 13. Defects   | in the San   | mple (Check             | appropriate                        | items):      |              |                         |               |               |                                                 |
| _             | х            | NONE                    |                                    |              |              |                         |               |               |                                                 |
| -             | :            | Soil/Tube C             | ontact                             | Large        | Gravel _     |                         | Large Ro      | ots           |                                                 |
| -             | !            | Dry Soil                | Sı                                 | mearing _    |              | Compa                   | action        |               |                                                 |
| -             |              | Other - Spe             | cify                               |              |              |                         |               |               |                                                 |

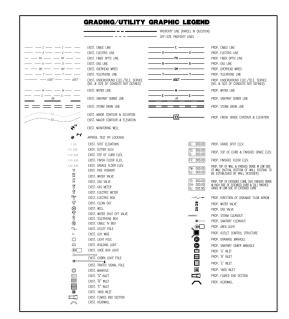
Job Number: 3639-99-001E Project: Proposed Residual Building Client: NorthStar Capital

| Sample ID Boring/     | Test Pit No.:               | 3 <b>S</b>                               | ample No.:        | 2                       | Depth:          | 7.5 ft     | Client: NorthStar Capital  Lab Tech: Sam        |
|-----------------------|-----------------------------|------------------------------------------|-------------------|-------------------------|-----------------|------------|-------------------------------------------------|
| MUNICIPALITY          | Point Plea                  | sant                                     | BLOCK             | 113                     | _LOT _          | 41&43      | Lab Tech: Sam                                   |
| 1. Test Number        | 2                           | Replicate (letter)                       | В                 | _Date Col               | lected _        | 11/18/2020 |                                                 |
| 2. Material Tested:   |                             | Fill X                                   | Test in N         | ative Soil-I            | ndicate Depth   |            |                                                 |
| 3. Type of Sample:    | x                           | Undisturbed                              |                   | _ Disturbed             | d               |            |                                                 |
| 4. Sample Dimension   | ons:                        | Inside Radius of Sample                  |                   | R, in cm                | 1.905<br>4.00   |            |                                                 |
| 5. Bulk Density Dete  | ermination (D               | isturbed Samples                         | Only): N/A        |                         |                 |            |                                                 |
| 6. Sample Weight (\   | Wt. Tube Cor                | ntaining Sample-W                        | t. of Empty Tube  | e), grams               |                 |            | Wt. of Tube Containing Sample Wt. of Empty Tube |
| 7. Sample Volume (    | L x 2.54 cm./               | inch x 3.14R2), cc                       |                   |                         | 115.7746        |            |                                                 |
| 8. Bulk Density (Sar  | mple Wt./San                | nple Volume), gran                       | ns/cc.            |                         |                 | > 1.2      |                                                 |
| 9. Standpipe Used:    | x                           | No                                       | Yes, Indi         | icate Intern            | nal Radius, cm. | N/A        |                                                 |
| 10. Height of Water   | Level Above                 | Rim of Test Basin                        | , in inches:      |                         |                 |            |                                                 |
|                       |                             | ach Test Interval, F<br>est Interval, H2 | 5.00              |                         |                 |            |                                                 |
| 11. Rate of Water Lo  | evel Drop (Ad               | dd additional lines                      | f needed):        |                         |                 |            |                                                 |
|                       | Start of Test<br>terval, T1 | Time End of Te<br>Interval T2            |                   | h of Test<br>T, Minutes | 5               |            |                                                 |
| 0:                    | :00:00                      | 00:37.1                                  | 0                 | 0.62                    |                 |            |                                                 |
| 0:                    | :00:00                      | 00:35.9                                  | 0                 | 0.60                    |                 |            |                                                 |
| 0:                    | :00:00                      | 0:00:40                                  | O                 | 0.66                    |                 |            |                                                 |
|                       |                             |                                          |                   |                         |                 |            |                                                 |
| 12. Calculation of Po | ermeability:                | K, (in/hr) = 60 mir                      | n/hr x r2/R2 x L( | (in)/T(min)             | x In (H1/H2)    | T= 0.66    | <u> </u>                                        |
| K =                   | > 20                        | Class                                    | ification:        | K5                      |                 |            |                                                 |
| 13. Defects in the S  | ample (Chec                 | k appropriate item                       | s):               |                         |                 |            |                                                 |
| X                     | NONE                        |                                          |                   |                         |                 |            |                                                 |
|                       | _ Soil/Tube C               | ContactL                                 | arge Gravel _     |                         | Large Roc       | ots        |                                                 |
|                       | _ Dry Soil                  | Smear                                    | ing               | Comp                    | action          |            |                                                 |
|                       | _ Other - Spe               | ecify                                    |                   |                         |                 |            |                                                 |










2. CONTRACTOR IS RESPONSIBLE FOR VERRICATION OF DISTING TOPOSPHAPE INFORMATION AND UTILITY INVEST ELERATIONS PROCE TO COMMENCED IN THE AUGUST ALL TOPOSPHAPE IN TOPOSPHAPE IN THE AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUG

- PROPOSED TOP OF CURB PLENTONS ARE CONSTALLY 6" ARXIV EXISTING LOCAL ASPHALT ORDIC UNLESS OTHERWISE NOTED. FIELD ADJUST TO ORBITE A MIN. OF 0.75% GUTTER GRADE ALDING CURB FACE, ENJANCER TO APPRING FINAL CURBING OUT SPEEDS PRIOR TO INSTALLATION. 4. SUBBASE MUTERAL FOR SIDEMAKS, DURB, OR ASPHALT SHALL BE FREE OF ORDANDS AND OTHER UNSURINKE MUTERALS. SHOULD SUBBASE BE DEEMED UNSURINKE, SUBBASE IS TO BE REMOVED AND FILED WITH APPROVED FILL MATERAL COMPACTED TO 90% OPTIMUM DENSITY (AS DETERMINED BY MODIFED PROCISIO WHENDO.)
- 6. IN CASE OF DISCREPANCIES BETWEEN PLANS, THE SITE PLAN WILL SUPERCEDE IN ALL CASES. CONTRACTOR WIST NOTIFY ENGINEER OF RECORD OF ANY CONFLICT IMPERATELY.
- 7. MAXIMUM CROSS SLOPE OF 2% ON ALL SIDEMALKS.

w-(D

- 8. CONTRACTOR TO ENSURE A MAXIMUM OF 25 SLOPE IN ALL DIRECTIONS IN JOA PAPKING SPACES AND AGA ACCESS ASLES. CONTRACTOR TO EXISTRE A MAXIMUM OF 35 SHOWNED, THE AMOUNT OF A PAPKING SPACES AND AGA ACCESS ASLES. CONTRACTOR IN AN OLD THE AMOUNT OF A PAPKING SPACES AND AGA ACCESS ASLES. CONTRACTOR OF A PAPKING SPACES AND AGA ACCESS ASLES. CONTRACTOR AND SPACES AND AGA ACCESS ASLES. CONTRACTOR AND SPACES AND AGA ACCESS ASLES. CONTRACTOR AND AGA ACCESS ASLES. CONTRACTOR AND AGA ACCESS ASLES. CONTRACTOR AND AGA ACCESS ASLES. CONTRACTOR AND AGA ACCESS ASLES. CONTRACTOR AND ACCESS ASLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR AND AGA ACCESS ASSLES. CONTRACTOR ASSLES. CONTRACTOR ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS ASSLESS A
- 9. THE CONNER SHALL RETAIN DINNANC EARTH, LLC (908-839-7025) OR AUTEMATE QUALIFIED DEDIED-INCAL ENGINEER TO TEST SOIL PRINCE/BUILTY AND PROVIDE CONSTRUCTION PRICE RESPECTIONS OF THE BISIN BOTTON SOILS AND ANY FILL MATERIALS WITHIN ANY PROPERCED INFLITIATION OR RETENTION BISIN TO COMPRISE RESULTS TO LEGACION CONTENT.
- 10. CONTRACTOR IS TO REMOVE EXISTING UNSUITABLE OR OVERLY COMPACT SOIL OR ROCK AS NEEDED TO ACHEVE REQUIRED PERMEABILITY AS DIRECTED BY THE OWNERS CEDITECHNICAL ENGINEER, AND MEN FILL, IF METERD, SHALL HAVE AN IN PLACE PERMEABILITY GREATER THAN OR COLUM, TO THE DESIGN CONTENA. 11. CONTRACTOR IS RESPONSIBLE FOR CONDUCTING THE OWNER'S GEOTECHNICAL ENGINEER PRIOR TO CROSET OF CONSTRUCTION TO SUBMIT AND CONFIRM THE CONTRACTOR'S PROPOSED BANKS AND MATERIALS AND TO SCHEDULE INSPECTIONS FOR BOTTOM OF BASIN, REMOVE, OF UNSURNEE SOL, PLL PLACEMENT, AND PARK LISES PRESIDENT TESTING.





tvis plad set is for permitting purposes only and may not be used for construct DYNAMIC ENGINEERING GRADING PLAN NORTHSTAR CAPITAL, LLC 3639-99-001 DRAWN BY: KJH PROPOSED MULTI-FAMILY RESIDENTS (POINT VIEW LUXURY APARTMENTS) SCALE: (H) 1"=20 DESIGNED BY: KCK SHEET No. CHECKED RY: 5 DOUGLAS GRYSKO KYLE C. KAVINSKI PROTECT YOURSELF

IN JOHN BASE CONDON OF
DESIRED CONTROL OF PERSON

Buy said below

Exp. said control

Buy said below

Call later year

Call later year

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Call control

Cal 0F 13 PROFESSIONAL ENGINEER NEW JERSEY LICENSE No. 45896 PROFESSIONAL ENGINEER NEW JERSEY LICENSE No. 52985

COPYRIGHT = 2021 - DYNAMIC ENGINEERING CONSULTANTS, PC - ALL RIGHTS RESERVED