Point Pleasant Borough

WATER QUALITY REPORT 2020

Is my water safe?

Yes, your water is safe to drink. We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about your water sources, their contents and how they compare to standards set by regulatory agencies. This report is a snapshot of last year's water quality (2020). We are committed to providing you with information because informed customers are our best allies.

Where does my water come from?

Your drinking water is sourced from (4) groundwater wells located within Point Pleasant, in addition to water purchased from the Brick Township Municipal Utilities Authority and New Jersey American Water Co. The Borough of Point Pleasant wells are between 80 to 1300 feet deep and draw their water from the Kirkwood, Englishtown and Raritan formations. The water from Brick is drawn from wells and the Metedeconk River and is treated at their facilities on Route 88 West. Water from New Jersey American comes from Englishtown and Raritan formations along with surface water from the Jumping Brook Treatment Plant.

Source Water Assessment and its availability

The Source Water Assessment Report and summary for this public water system is available at <u>www.state.nj.us/dep/watersupply/swap/</u>or by contacting NJDEP, Bureau of Safe Drinking Water at (609-292-5550).

Susceptibility Ratings for Point Pleasant water sources

If a system is rated susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated water. The rating reflects the potential_for contamination of source water, not the existence of contamination. Public Water Systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels. As a result of assessments, DEP may customize (change existing) monitoring schedules based on the susceptibility ratings.

	Pa	thoge	ns	N	utrien	ts	Pe	esticid	es	0	/olatil Drgani mpou	с		iorgan mpour			Radio uclide			Radon		Ву	infecti produ ecursc	ct
Sources	н	м	L	н	М	L	н	м	L	н	м	L	н	м	L	н	м	L	н	М	L	н	М	L
Wells 4			4	1		3			4	1		3	1	3		1	2	1		1	3	1	3	
GUDI-0																								
Surface Water Intake-0																								

How can I get involved?

If you would like more information about this report or have any questions you may contact Bob Forsyth, Licensed Water Plant Operator at 732-892-1287 or send an email to publicworks@ptboro.com . We want to keep you informed about your water supply and distribution system. You may also attend any of the regular Borough Council meetings held at Town Hall located at 2233 Bridge Avenue on the second and fourth Mondays of each month at 7:00 p.m. Our Website can be found at PTBORO.COM.

Water Conservation Tips

Did you know the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference – try one today and soon it will become second nature. Water your lawn at the least sunny times, between 7 a.m. to 9 a.m. ONLY. Odd/even house number restrictions apply from May 15th to September 15th. Fix toilet and faucet leaks. Take short showers. A five minute shower uses about 10 gallons of water compared to up to 50 gallons for a bath. Turn the faucet off while brushing teeth and shaving. 3-5 gallons go down the drain per minute. Teach your kids about water conservation to ensure a future generation who uses water wisely. Make it a family effort to reduce next month's water usage.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Point Pleasant Borough is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

	2020	Water O	uality R	Report -	Point Pl	easant	Boroug	h - NJ15	24001				
Contaminant	Violation	Average for Your Water		nge	Number of Samples Exceeding	Sample Date	MCLG or MRDLG	MCL, TT, or MRDL	Typical Source				
(The	ere is convinc	ing eviden		nfectants	& Disinfe	-		ntrol of mi	crobial contaminants)				
Chlorine (as Cl2) (ppm)	No	0.72	0.20	3.94	NA	2020	4	4	Water additive used to control microbes				
TTHM's (Total Trihalomethanes) (ppb)	No	18.21	0.63	71.9	NA	2020	NA	80	By-product of drinking water chlorination				
Total Coliform Bacteria	No	NA	NA	NA	0	2020	0	<5%	Typical Source: Naturally present in the environment				
Haloacetic Acids (HAA5) (ppb) STAGE 2	No	14.82	4.0	11.6	NA	2020	NA	60	By-product of drinking water chlorination				
Organic Contaminants													
PFNA (ppt)	No	1.20	.91	1.50	0	2020	NA	13 ng/l	By-product of industrial processes				
	Inorganic Contaminants												
Nitrate [measured as Nitrogen] (ppm)	No	0.80	0.08	2.94	0	2020	10	10	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.				
Copper - action level at consumer (ppm) taps 3	No	0.071 ₃	ND	0.36	0	2020	1.3	1.3	Corrosion of household plumbing systems; Erosion of natural deposits				
Cadmium (ppb)	No	0.15	ND	0.00015	0	2020	5	5	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints.				
Nickel (ppb)	No	1.1	ND	0.0011	0	2020	NA	NA	Leaching from metals in contact with drinking water such as pipes and fittings; erosion of natural deposits				
Mercury (ppb)	No	0.33	ND	0.00033	0	2020	2	2	Erosion of natural deposits; discharge from refineries and factories: runoff from landfills and cropland				
Beryllium (ppb)	No	0.06	ND	0.00006	0	2020	4	4	Discharge from metal refineries and coal burning factories; discharge from electrical, aerospace, and defense industries				
Barium (ppm)	No	0.06	ND	0.06	0	2020	5	5	Discharge of drilling waste; discharge from metal refineries; erosion of natural deposit				
Lead - action level at consumer taps (ppb)	No	1.243	ND	18.10	1	2020	0	15	Corrosion of household plumbing systems; Erosion of natural deposits				
				Radioa	active Con	taminan	ts						
Radium (combined 226/228) (pCi/L)	No	1.25	1.17	1.33	NA	2020	0	5	Erosion of natural deposits				
Alpha emitters (pCi/L) includes radon	No	NA	NA	3.79	NA	2020	0	15	Erosion of natural deposits				

	Unregulated Co	ntaminants (ppb)	Highest Level Detected
CONTAMINANTS	AVERAGE LEVEL DETECTED	RANGE	
Bromochloroacetic Acid	2.41	ND-3.9	<u>Reference Key</u> (for table)
Bromodichloroacetic Acid	1.80	ND-3.8	MCLG=Maximum Contaminant Level Goal NA=Not Applicable MCL= Maximum Contaminant Level ND=Not Detected
Chlorodibromoacetic Acid	0.75	ND-1.1	RUL= Recommended Upper Limits MRDL=Maximum Residential Disinfectant Level MRDLG= Maximum Residential Disinfectant Level Goal
Dibromoacetic Acid	1.40	ND-2.5	ppm= parts per million or miligrams per liter (wg/L) ppb= parts per billion or micrograms per liter (wg/L)
Dichloroacetic Acid	5.33	ND-16.3	pCi/L=picocuries per liter (a measure of radioactivity) LRAA= Locational Running Annual Average
Trichloroacetic Acid	5.69	ND-24.0	AL= Action Level—The concentration of a contaminant which, if exceeded triggers treatment or other Requirements which a water system must follow
Monobromoacetic Acid	0.35	ND-0.36	

 INIONODFORMOACETIC ACID
 0.35
 ND=0.36

 Maximum Contaminant Level (MCL) Highest level of contaminant that is allowed in drinking water. MCLs are set as close to the MCLs as feasible using the best available treatment technology.

 Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there in no known or expected risk to health. MCLGs allow for a margin of safety.

	Second	dary Contamiı	nants	
Contaminant	Unit Measurement	RUL	Amount Detected	Sample Date
Aluminum	ppm	0.2	<0.03 to 0.371	2020
Chloride	ppm	250	4.58 to 70.9	2020
Fluoride	ppm	2.0	0.038 to 0.073	2020
Hardness ₆	ppm	250	54.8 to 73.7	2020
Iron ₄	ppm	0.3	0.043 to 0.094	2020
Manganese ₅	ppm	0.05	0.006 to 0.071	2020
Sodium	ppm	50	6.59 to 43.9	2020
Sulfate	ppm	250	7.5 to 25.4	2020
Zinc	ppm	5	0.02 to 0.36	2020

¹ Highest LRAA. TTHMs [Total Trihalomethanes]: Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys or central nervous system and may have increased risk of cancer.

2 Highest LRAA.

³ As required by NJDEP, these values are the levels detected at the 90th percentile of all samples taken. Therefore, 90% of the samples had levels at or below this value.

⁴ The recommended upper limit for iron is based on unpleasant taste of the water and staining of laundry. Iron is an essential nutrient, but some people who drink water with iron levels well above the recommended upper limit could develop deposits of iron in a number of organs of the body. ⁵ The recommended upper limit for manganese is based on staining of laundry. Manganese is an essential nutrient, and toxicity is not expected from high levels which would not be encountered in drinking water. ⁶ 61 to 120 ppm is classified as moderately hard water.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; and Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. (Radon is a colorless, doorless, cancer-causing gas which occurs naturally in the environment.) For more information go to http://www.nj.gov/dep/rpp/radon/index.htm or call 1-800-648-0394.

In order to ensure that your tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The Food and Drug Administration's (FDA) regulations establish limits for contaminants in bottle water which must provide the same protection for public health. The Water Quality Report table on the previous page, lists all of the drinking water contaminants we detected during the calendar year of 2020. Although many more contaminants were tested for, only those substances listed were found in your water. **All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are not harmful in our drinking water**. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA and the State require us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as per- sons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Unregulated Contaminants Monitoring Rule (UCMR4)

During 2019 & 2020, Point Pleasant participated in the fourth phase of the Unregulated Contaminant Monitoring Rule (UCMR4). Unregulated contaminants are those for which the EPA has not established drinking water standards. Monitoring assists the EPA in determining the occurrence of these compounds and whether or not regulation is warranted. For general information on UCMR, visit <u>http://water.epa.gov/lawsregs/rulesregs/sdwa/ucmr/ ucmr4</u> or contact EPA's Safe Drinking Water Hotline at 1-800-426-4791.

Microbiological Contaminants

As required by NJDEP, the Borough collects twenty (20) samples per month and has them tested for coliform bacteria. These samples are taken at various location within the Borough's distribution system. Coliform bacteria are naturally occurring in our everyday environment. These bacteria are not harmful themselves, but their presence is an indicator that there is the potential for other forms of bacteria. All water delivered to the Borough's distribution system is adequately treated to prevent the formation of such bacteria.

SOC Waiver

This water system was given a waiver by the NJDEP for exemption from monitoring for synthetic organic compounds (SOC's). SOC's include substances like pesticides, herbicides and plasticizers

Coastal North: Monmouth System/Ocean County – PWS ID# NJ1345001 Table of Detected Contaminants – 2020

Towns Served by this system: Ocean County area of system-Bay Head | Brick Township in part | Dover in part | Lavallette in part | Mantoloking | Ortley Beach | Pelican Island

Those substances not listed in this table were not found in the treated water supply.

Regulated Substances 1

Contaminant	Units	MCL	MCLG	Range Detected	Highest Level Detected	Compliance Achieved	Typical Source
Inorganic Chemicals					Dettetted		l
Total Coliform	cfu	Coliform detected no more than 5% of monthly samples	0	NA	0 % ⁹	Yes	Naturally present in environment
Fluoride ²	ppm	2	2	ND to 0.76	0.76	Yes	Erosion of natural deposits; Water additive which promotes strong teeth
Nitrate	ppm	10	10	ND to 0.62	0.62	Yes	Runoff from fertilizer use; Industrial or domestic wastewater discharges; Erosion of natural deposits
Treatment By-Products S	tage-2- Distril			Range		Compliance	
Contaminant	Units	MCL	MCLG	Detected	LRAA ³	Achieved	Typical Source
Total Trihalomethanes [TTHMs Site DBP2-1 Total Trihalomethanes	ppb	80	NA	36.2 to 64.1	44.35	Yes	By-product of drinking water disinfection By-product of drinking water
[TTHMs] Site DBP2-2	ppb	80	NA	35.6 to 63.0	48.83	Yes	disinfection
Total Trihalomethanes [TTHMs] Site DBP2-3	ppb	80	NA	33.5 to 77.5	51.38	Yes	By-product of drinking water disinfection
Total Trihalomethanes [TTHMs] Site DBP2-4	ppb	80	NA	31.0 to 62	47.18	Yes	By-product of drinking water disinfection
Total Trihalomethanes [TTHMs] Site DBP2-6	ppb	80	NA	32.0 to 59.3	42.48	Yes	By-product of drinking water disinfection
Total Trihalomethanes [TTHMs] Site DBP2-7	ppb	80	NA	29.4 to 40.2	36.23	Yes	By-product of drinking water disinfection
Total Trihalomethanes [TTHMs] Site DBP2-8	ppb	80	NA	3.1 to 51.5	25.53	Yes	By-product of drinking water disinfection
Total Trihalomethanes [TTHMs] Site DBP2-9	ppb	80	NA	28.0 to 66.0	48.60	Yes	By-product of drinking water disinfection
Total Trihalomethanes [TTHMs] Site DBP2-11	ppb	80	NA	32.4 to 60.0	42.38	Yes	By-product of drinking water disinfection
Total Trihalomethanes [TTHMs] Site DBP2-12	ppb	80	NA	36.0 to 56.3	43.80	Yes	By-product of drinking water disinfection
Total Haloacetic Acids [THAA5] Site DBP2-1	ppb	60	NA	7.6 to 16.7	10.85	Yes	By-product of drinking water disinfection
Total Haloacetic Acids [THAA5] Site DBP2-2	ppb	60	NA	2.7 to 15.8	9.98	Yes	By-product of drinking water disinfection
Total Haloacetic Acids [THAA5] Site DBP2-3	ppb	60	NA	5.0 to 16.1	10.38	Yes	By-product of drinking water disinfection
Total Haloacetic Acids [THAA5] Site DBP2-4	ppb	60	NA	6.0 to 16	11.0	Yes	By-product of drinking water disinfection
Total Haloacetic Acids [THAA5] Site DBP2-6	ppb	60	NA	6.7 to 13.8	10.63	Yes	By-product of drinking water disinfection
Total Haloacetic Acids [THAA5] Site DBP2-7	ppb	60	NA	5.0 to 18.5	10.58	Yes	By-product of drinking water disinfection
Total Haloacetic Acids [THAA5] Site DBP2-8	ppb	60	NA	0.0 to 22.3	8.4	Yes	By-product of drinking water disinfection
Total Haloacetic Acids [THAA5] Site DBP2-9	ppb	60	NA	6.8 to 10.6	9.50	Yes	By-product of drinking water disinfection
Total Haloacetic Acids [THAA5] Site DBP2-11	ppb	60	NA	8.0 to 17.1	11.88	Yes	By-product of drinking water disinfection
Total Haloacetic Acids [THAA5] Site DBP2-12	ppb	60	NA	10.9 to 16.0	12.73	Yes	By-product of drinking water disinfection
Contaminant	Units	MCL	MCLG	Range Detected	Highest Level Detected	Compliance Achieved	Typical Source
Turbidity ^{5, 11}							
-		TT = 1	NA	0.01 to 0.29	0.29	Yes	
Turbidity 2020	ntu	NTU TT = percent of Samples <0.3 ntu	NA	100%	NA		Soil runoff

Total Organic Carbon		MCLG	Perc (% Rem Ran) oval	Percent Remov Require	al Pa	Removal tio Range	RAA (%) Removal Ration	Complian Achieve		pical Source
		RAA (%) Removal Ratio	14.1 56.5	% to	35%	0.9	1 to 1.82	1.09 to 1.29 ¹⁰	Yes	Na	aturally present in the environme
Disinfectants		Hatto									
Chloramines		ppm	MRD 4		MRDLG	= 4 0.0	06 to 3.00	1.364	Yes		ater additive used to control icrobes
Tap water samples v	were coll	ected for	lead an	d cop	per analysis	from home	s in the serv				
Contaminant		Units	Acti Lev		MCLG	i D	Amount Detected Oth %tile)	Homes Above Action Level	Complian Achieve		pical Source
Copper 2020		ppm	1.	3	1.3		0.23	none Yes			prrosion of household plumbing stems
Lead 2020		ppb	15	5	0		3	none	Yes	Co	prrosion of household plumbing stems
econdary Co	ontami	inants	2020							393	310113
Contaminant Iron ⁶					n <mark>its</mark>			RUL			Amount Detected
Manganese 7					pm pm		C	0.3 0.05			ND to 0.27 ND to 0.067
Sodium ⁸					pm			50			ND to 46
Hardness Aluminum		_+			pm pm			250 0.05			76 to 112 ND
Inregulated (Conta	minar	t Mo			0			·		
Contaminant	Units	NJC Guida Lev	EP ance	F	Range	Highest Level Detected	Use or	Environmental	Source		
1,4-Dioxane	ppb	N	A	0.12	2 to 0.21	0.21					ocessing of paper, cotton, etics and shampoos.
contaminants in drir Contaminant	g water st			gulatio		ted. For test Range Detected	Use or Use or IS - List AM1 Natura	ed in the Coasta Environmental ally present in t	I North Syste Source	ermining t em, the fol ent; used i	e for which the EPA has not he occurrence of unregulated llowing substances were found. ¹
	g water st	er and wi Unit	nether re	gulatio	on is warran Highest Level Detected	ted. For test Range Detected Meta	Use or Use or Is - List AM1 Natura batteri	ed in the Coasta Environmental ally present in t	I North Syste Source	ermining t em, the fol ent; used i	he occurrence of unregulated llowing substances were found. ¹
contaminants in drir Contaminant Manganese Germanium	g water st	er and wi	nether re	gulatio	0 is warran Highest Level Detected 73 0.32	ted. For test Range Detected Mote ND to 73	Use or Use or Is - List AM1 Natura batteri 2 Acid (HAA) (d in the Coasta Environmental ally present in t ies and firework	I North Syste Source ne environme (s; drinking v	ermining t em, the fol ent; used i vater and	he occurrence of unregulated llowing substances were found. ¹
contaminants in drir Contaminant Manganese	g water stanking wat	er and wi	nether re	gulatio	0 is warran Highest Level Detected 73 0.32	ted. For test Range Detected Mote ND to 73	List AM1 Natura Add (HAA) (By-pro	d in the Coasta	I North Syste Source ne environme (s; drinking v	ermining t em, the fol ent; used i vater and	he occurrence of unregulated llowing substances were found. ¹
Contaminants in drir Contaminant Manganese Germanium HAA6Br Group	g water st nking wat	er and wi Unit ppb ppb	MRL	gulatio	n is warran Highest Level Detected 73 0.32 Brominate	ted. For test Range Detected Mete ND to 73 ND to 0.3 d Haloacetid	List AM1 Natura batteri 2 b Acid (HAA) (By-pro 6	d in the Coasta Environmental ally present in t ies and firework	I North Syste Source ne environme (s; drinking v	ermining t em, the fol ent; used i vater and	he occurrence of unregulated llowing substances were found. ¹
Contaminants in drir Contaminant Manganese Germanium HAA6Br Group Bromochloroaceti	g water st nking wat	er and wi Unit ppb ppb	N/A	gulatio	n is warran Highest Level Detected 73 0.32 Brominate	ted. For test Range Detected Meta ND to 73 ND to 0.3 d Haloacetic 0.68 to 2.	List AM1 Also or Also List AM1 Natura batteri 2 Aold (HAA) (By-pro 6	d in the Coasta Environmental ally present in t ies and firework	I North Syste Source ne environme (s; drinking v	ermining t em, the fol ent; used i vater and	he occurrence of unregulated llowing substances were found. ¹
contaminants in drir Contaminant Manganese Germanium HAA6Br Group Bromochloroaceti Bromodichloroaceti	g water st nking wat c Acid tic Acid Acid	er and wi Unit ppb ppb ppb	N/A N/A	gulatio	n is warran Highest Level Detected 73 0.32 Brominate 2.6 1.7	ted. For test Range Detected Meta ND to 73 ND to 0.3 d Haloaceted 0.68 to 2. ND to 1.7	Ing conducte Use or Is - List AM1 Natura batteri 2 Acid (HAA) (By-pro 6 5	d in the Coasta Environmental ally present in t ies and firework	I North Syste Source ne environme (s; drinking v	ermining t em, the fol ent; used i vater and	he occurrence of unregulated llowing substances were found. ¹
contaminants in drir Contaminant Manganese Germanium HAA6Br Group Bromochloroaceti Bromodichloroaceti Dibromoacetic A	g water st nking wat ic Acid tic Acid Acid c Acid	er and wi Unit ppb ppb ppb ppb	N/A N/A	gulatio	n is warran Highest Level 73 0.32 Brominate 2.6 1.7 0.85	ted. For test Range Detected Meta ND to 73 ND to 0.3 d Haloaceted 0.68 to 2. ND to 1.7 ND to 0.8	Ing conducte Use or Is - List AM1 Natura batteri 2 Acid (HAA) (By-pro 6 5	d in the Coasta Environmental ally present in t ies and firework	I North Syste Source ne environme (s; drinking v	ermining t em, the fol ent; used i vater and	he occurrence of unregulated llowing substances were found. ¹
contaminants in drir Contaminant Manganese Germanium HAA6Br Group Bromochloroacetic Bromodichloroacetic Dibromoacetic Monobromoacetic Tribromoacetic A	g water st nking wat c Acid tic Acid c Acid c Acid	er and wi Unit ppb ppb ppb ppb ppb	N/A N/A N/A N/A	gulatio	n is warran Highest Level Detected 73 0.32 Brominate 2.6 1.7 0.85 0.52	ted. For test Range Detector Mete ND to 73 ND to 0.3 d Haloacette 0.68 to 2. ND to 1.7 ND to 0.8 ND to 0.8	Ing conducte Use or Natura batteri 2 5 Acid (HAA) of By-pro 6 5 5 2	d in the Coasta Environmental ally present in t ies and firework	I North Syste Source ne environme (s; drinking v	ermining t em, the fol ent; used i vater and	he occurrence of unregulated llowing substances were found. ¹
contaminants in drin Contaminant Manganese Germanium HAAGBr Group Bromochloroacetic Bromodichloroacetic Dibromoacetic Monobromoacetic Tribromoacetic Chlorodibromoacetic	g water st nking wat c Acid tic Acid Acid Acid tic Acid	er and wi Unit ppb ppb ppb ppb ppb ppb	N/A N/A N/A N/A N/A	gulatio	n is warran Highest Level Detected 73 0.32 Brominate 2.6 1.7 0.85 0.52 ND 2.5	ted. For test Range Detected Mete ND to 73 ND to 0.3 d Haloacette 0.68 to 2. ND to 1.7 ND to 0.8 ND to 0.5 ND to 0.5 ND to 2.5	Ing conducte Use or his - List AM1 Natura batteri 2 S Acid (HAA) (By-pro 6 5 2 2 3 5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	d in the Coasta Environmental ally present in t ies and firework	I North Syste Source ne environme (12) g water disinf	ertioning t ent; used i acter and t ection	he occurrence of unregulated llowing substances were found. ¹
contaminants in drir Contaminant Manganese Germanium HAA6Br Group Bromochloroacetic Bromodichloroacetic Dibromoacetic Monobromoacetic Tribromoacetic Chlorodibromoacetic HAA9 Group Bromochloroacetic	g water st nking wat ic Acid tic Acid c Acid tic Acid tic Acid c Acid tic Acid	er and wi Unit ppb ppb ppb ppb ppb ppb ppb ppb	N/A N/A N/A N/A N/A N/A	gulatio	n is warran Highest Level Detected 73 0.32 Brominate 2.6 1.7 0.85 0.52 ND 2.5 2.6	ted. For test Range Detected Meter ND to 73 ND to 0.3 d Haloacetic 0.68 to 2. ND to 1.7 ND to 1.7 ND to 0.8 ND to 0.5 ND to 0.5	Ing conducte Use or Is - List AM1 Natura batteri 2 S Acid (HAA) (By-pro 6 5 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	d in the Coasta Environmental ally present in the les and firework Group – List AN duct of drinking	I North Syste Source ne environme (12) g water disinf	ertioning t ent; used i acter and t ection	he occurrence of unregulated llowing substances were found. ¹
contaminants in drin Contaminant Manganese Germanium HAAGBr Group Bromochloroacetic Bromodichloroacetic Dibromoacetic Monobromoacetic Tribromoacetic Chlorodibromoacetic	g water st nking wat ic Acid tic Acid c Acid c Acid tic Acid ic Acid tic Acid	er and wi Unit ppb ppb ppb ppb ppb ppb	N/A N/A N/A N/A N/A	gulatio	n is warran Highest Level Detected 73 0.32 Brominate 2.6 1.7 0.85 0.52 ND 2.5	ted. For test Range Detected Mete ND to 73 ND to 0.3 d Haloacette 0.68 to 2. ND to 1.7 ND to 0.8 ND to 0.5 ND to 0.5 ND ND to 2.5	Ing conducted Use or Natural 2 2 Acid (HAA) (By-pro 6 5 2 2 3 5 5 5 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	d in the Coasta Environmental ally present in the les and firework Group – List AN duct of drinking	I North Syste Source ne environme (12) g water disinf	ertioning t ent; used i acter and t ection	he occurrence of unregulated llowing substances were found. ¹
contaminants in drir Contaminant Manganese Germanium HAA6Br Group Bromochloroacetic Bromodichloroacetic Dibromoacetic Dibromoacetic Tribromoacetic Chlorodibromoacetic HAA9 Group Bromochloroacetic	g water st nking wat c Acid tic Acid c Acid c Acid tic Acid c Acid tic Acid tic Acid	er and wi Unit ppb ppb ppb ppb ppb ppb ppb ppb ppb	N/A N/A N/A N/A N/A N/A N/A N/A	gulatio	n is warran Highest Level Detected 73 0.32 Brominate 2.6 1.7 0.85 0.52 ND 2.5 2.6 1.7	ted. For test Range Detected Meta ND to 73 ND to 0.3 d Haloacetic 0.68 to 2. ND to 1.7 ND to 0.8 ND to 0.5 ND to 0.5 ND to 2.5 O.68 to 2.	Ing conducted Use or Natura batteri 2 2 2 Acid (HAA) (By-pro 6 5 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	d in the Coasta Environmental ally present in the les and firework Group – List AN duct of drinking	I North Syste Source ne environme (12) g water disinf	ertioning t ent; used i acter and t ection	he occurrence of unregulated llowing substances were found. ¹
contaminants in drin Contaminant Manganese Germanium HAA6Br Group Bromochloroacetic Bromodichloroacetic Dibromoacetic Tribromoacetic Chlorodibromoacetic HAA9 Group Bromochloroacetic Bromochloroacetic	g water st nking wat c Acid tic Acid Acid c Acid tic Acid tic Acid tic Acid tic Acid c Acid c Acid	er and wi Unit ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	N/A N/A N/A N/A N/A N/A N/A N/A N/A	gulatio	n is warran Highest Level Detected 73 0.32 Brominate 2.6 1.7 0.85 0.52 ND 2.5 2.6 1.7 0.85	ted. For test Range Detected ND to 73 ND to 0.3 d Haloacetic 0.68 to 2. ND to 1.7 ND to 0.5 ND to 0.5 ND ND to 2.5 0.68 to 2. ND to 1.7 ND to 1.7	Ing conducte Use or Use of Natura batteri 2 2 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	d in the Coasta Environmental ally present in the les and firework Group – List AN duct of drinking	I North Syste Source ne environme (12) g water disinf	ertioning t ent; used i acter and t ection	he occurrence of unregulated llowing substances were found. ¹
contaminants in drin Contaminant Manganese Germanium HAA6Br Group Bromochloroacetic Bromodichloroacetic Dibromoacetic Monobromoacetic HAA9 Group Bromochloroacetic Bromodichloroacetic Dibromoacetic A	g water st nking wat ic Acid tic Acid tic Acid acid tic Acid tic Acid tic Acid tic Acid acid acid acid acid acid acid acid a	er and wi Unit ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	gulatio	on is warran Highest Levei Detected 73 0.32 Brominate 2.6 1.7 0.85 0.52 ND 2.5 2.6 1.7 0.85 0.52	ted. For test Range Detected ND to 73 ND to 0.3 d Haloacette 0.68 to 2. ND to 1.7 ND to 0.5 ND to 2.5 0.68 to 2. ND to 1.7 ND to 1.7 ND to 1.7 ND to 1.7 ND to 0.8	ing conducte Use or Natura All - List AM1 Natura Batteri Called (HAA) (By-pro 6 7 7 8 7 8 8 9 9 7 7 8 9 9 9 9 9 9 9 9 9	d in the Coasta Environmental ally present in the les and firework Group – List AN duct of drinking	I North Syste Source ne environme (12) g water disinf	ertioning t ent; used i acter and t ection	he occurrence of unregulated llowing substances were found. ¹
contaminants in drin Contaminant Manganese Germanium HAA6Br Group Bromochloroacetic Bromodichloroacetic Dibromoacetic Monobromoacetic HAA9 Group Bromochloroacetic Bromochloroacetic Dibromoacetic Monobromoacetic	g water sti nking wat ic Acid tic Acid c Acid tic Acid tic Acid tic Acid c Acid tic Acid c Acid tic Acid tic Acid tic Acid	er and wi Unit ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	gulatio	n is warran Highest Level Detected 73 0.32 Brominate 2.6 1.7 0.85 0.52 ND 2.5 2.6 1.7 0.85 0.52 ND 2.5 ND 0.85 0.52	ted. For test Range Detector Mete ND to 73 ND to 0.3 d Haloacette 0.68 to 2. ND to 1.7 ND to 0.8 ND to 0.5 ND 0.68 to 2. ND to 1.7 ND to 0.5 ND 0.68 to 2. ND to 1.7 ND to 0.5 ND ND ND to 0.5 ND	ing conducte Use or Natural Sacial (HAA) (By-pro 6 5 2 3 5 5 6 7 7 5 5 7 7 5 7 7 7 7 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9	d in the Coasta Environmental ally present in the les and firework Group – List AN duct of drinking	I North Syste Source ne environme (12) g water disinf	ertioning t ent; used i acter and t ection	he occurrence of unregulated llowing substances were found. ¹
contaminants in drin Contaminant Manganese Germanium HAA6Br Group Bromochloroacetic Bromodichloroacetic Dibromoacetic Tribromoacetic HAA9 Group Bromochloroacetic Bromochloroacetic Dibromoacetic Chlorodibromoacetic Chlorodibromoacetic Chlorodibromoacetic	g water sti nking wat inking wat	er and wi Unit ppb ppb ppb ppb ppb ppb ppb ppb ppb pp	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	gulatio	on is warran Highest Levei Detected 73 0.32 Brominate 2.6 1.7 0.85 0.52 ND 2.6 1.7 0.85 0.52 ND 2.6 1.7 0.85 0.52 ND 2.5 ND 2.5	ted. For test Range Detector Meter ND to 73 ND to 0.3 d Haloacette 0.68 to 2. ND to 1.7 ND to 0.8 ND to 0.5 ND ND to 2.5 ND to 0.5 ND to 0.5 ND to 0.5 ND to 0.5 ND to 0.5 ND to 0.5	ing conducte Use or Natural Sacial (HAA) (By-pro 6 5 2 3 5 5 6 7 7 5 5 7 7 5 7 7 7 7 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9	d in the Coasta Environmental ally present in the les and firework Group – List AN duct of drinking	I North Syste Source ne environme (12) g water disinf	ertioning t ent; used i acter and t ection	he occurrence of unregulated llowing substances were found. ¹

Per- and Polyfluoroalkyl Substances

Per- or polyfluoroalkyl substances (PFAS) are man-made substances used in a variety of products, such as: stain resistant fabric, non-stick coatings, firefighting foam, paints, waxes, and cleaning products. They are also components in some industrial processes like electronics manufacturing and oil recovery. The New Jersey Department of Environmental Protection (NJDEP) has begun regulating some of these compounds, establishing a Maximum Contaminant Level for perfluoronanoic acid (PFNA) in 2019. While all other PFAS are not regulated, New Jersey American Water recognizes the importance of testing for these contaminants. Compounds detected are tabulated below, along with typical sources.

			Perfulorinated	I Compounds 2020
Parameter	Unit	Highest Level Detected	Range Detected	Use or Typical Source
Perfluorooctanoic acid (PFOA)*	ppt	6.0	ND to 6.0	Used for its emulsifier and surfactant properties in or as fluoropolymers (such as Teflon) fire fighting foams, cleaners, cosmetics, lubricants, paints, polishes, adhesives and photographic films
Perfluoropentanoic Acid (PFOS)**	ppt	4.4	ND to 4.4	Manmade chemical; used in products for stain, grease, heat and water resistance
Perfluorononanoic Acid (PFNA)	ppt	2.0	ND to 2.0	Manmade chemical; used in products for stain, grease, heat and water resistance
Perfluorohexanoic Acid (PFHxA)	ppt	3.6	ND to 3.6	Manmade chemical; used in products for stain, grease, heat and water resistance
Perfluoroundecanoic Acid (PFUnA)	ppt	2.4	ND to 2.4	Manmade chemical; used in products for stain, grease, heat and water resistance
Perfluorohexanesulfonic Acid (PFHxS)	ppt	2.5	ND to 2.5	Manmade chemical; used in products for stain, grease, heat and water resistance
Perfluoroheptanoic Acid (PFHpA)	ppt	1.8	ND to 1.8	Manmade chemical; used in products for stain, grease, heat and water resistance
Perfluorobutanesulfonic Acid (PFBS)	ppt	3.0	ND to 3.0	Manmade chemical; used in products for stain, grease, heat and water resistance
hexafluoropropylene oxide dimer acid (HFPO-DA)	ppt	2.2	ND to 2.2	Manmade chemical; used in products for stain, grease, heat and water resistance

Foot Note:

¹Under a waiver granted by the State of New Jersey Department of Environmental Protection, our system does not have to monitor for synthetic organic chemicals/pesticides because several years of testing have indicated that these substances do not occur in our source water. The SDWA regulations allow monitoring waivers to reduce or eliminate the monitoring requirements for volatile organic chemicals and synthetic organic chemicals. Our system received monitoring waivers for synthetic organic chemicals.

⁴ This level represents the highest annual quarterly Average calculated from the data collected.

5. Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of water quality. High turbidity can hinder the effectiveness of disinfectants.

The recommended upper limit for iron is based on unpleasant taste of the water and staining of laundry. Iron is an essential nutrient, but some people who

⁷The recommended upper limit for manganese is based on staining of laundry. Manganese is an essential nutrient, and toxicity is not expected from high levels which would be encountered in drinking water. Erosion of natural deposits.

⁸ For healthy individuals, the sodium intake from water is not important, because a much greater intake of sodium takes place from salt in the diet. However, sodium levels above the recommended upper limit may be of concern to individuals on a sodium restricted diet.
⁹ Maximum percentage of positive samples collected in any one month.

10. Annual average of ratio removal compliance based on annual present of ratio removal.

¹²⁰ Annual average of ratio removal compliance based on annual present of ratio removal. ¹²¹ Our water system violated a drinking water monitoring requirement during the past year. Even though this was not an emergency or danger to public health, as our customer, you have the right to know what happened and what we did to correct the situation. There is nothing you need to do at this time. New Jersey American Water routinely monitoring requirement, specifically, failed to collect a grab sample at least once every four hours during a turbidimeter failure at the Swimming River TP CFE. No grab sample was collected between 3:43 AM and 09:05 AM on 05/03/2020.

Our Water Research Efforts

Cryptosporidium is a protozoan found in surface water throughout the U.S. Although filtration removes Cryptosporidium, the most commonly used filtration methods cannot guarantee 100 percent removal. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, people with severely weakened immune systems have a risk of developing a life threatening illness. We encourage such people to consult their doctors regarding appropriate precautions to take to avoid infection. Cryptosporidium must be ingested to cause disease. It can also be spread through means other than drinking water. For additional information regarding cryptosporidiosis and how it may impact those with weakened immune systems, please contact your personal health care provider.

The U.S. EPA issued a rule in January 2006 that requires systems with higher Cryptosporidium levels in their source water to provide additional treatment. To comply with this rule, New Jersey American Water once again began conducting 24 consecutive months of monitoring for Cryptosporidium in our raw water sources starting in in 2015. The monitoring to date indicates the presence of these organisms in the source water. The samples were collected from the source before the water was processed through our treatment plants. We continued monitoring until April 2017. The data collected is presented in the Source Water Monitoring table below.

Source Water Monitoring

Contaminant	Swimming River source water	Jumping Brook source water	Oak Glen source Water	
Cryptosporidium, Oocysts/L	ND - 0.100	ND	ND	Microbial pathogens found in surface
Giardia, Cysts/L	0 - 0.558	0 - 0.089	0 - 0.558	waters throughout the United States.

2021 Water Quality Report (2020 Data) - Brick Township MUA - PWSID# NJ1506001

Overview In 2020, Brick Utilities continued participation in the Partnership for Safe Drinking Water, a national initiative to help achieve operational excellence in surface water treatment. The Partnership is a voluntary cooperative effort between the U.S. Environmental Protection Agency, AWWA and other drinking water organizations, with more than 200 surface water utilities throughout the United States. Brick Utilities maintains a laboratory that is certified by the New Jersey Department of Environmental Protection. The laboratory, which has operated continuously since 1975, is a key component of Brick Utilities Comprehensive Water Quality Monitoring Program. The Authority conducts monitoring of its source water treatment process and finished water in excess of the number and types of tests that are required by state or federal regulations. The Authority believes that a comprehensive source water testing program is essential, considering that 74% of the water that is treated comes from the Metedeconk River. The river is fed by a 70-square mile watershed that is subject to both natural and manmade contamination, which can cause the quality of the source or untreated water to change.

Water Source Brick Utilities treats approximately 3.0 billion gallons of water each year. In addition to water from the Metedeconk River and Brick Reservoir, the Authority draws water from high volume wells that tap into the Potomac-Raritan-Magothy Aquifer. These wells are nearly 2,000 feet deep and are not influenced by surface phenomena. The Authority also draws a relatively small amount of water from the Cohansey Aquifer. The New Jersey Department of Environmental Protection (NJDEP) has completed and issued the Source Water Assessment Report and Summary for the Brick Township MUA which is available at http://www.nj.gov/dep/watersupply/swap/ index.html, or by contacting the NJDEP, Bureau of Safe Drinking Water at (1-609-292-5550) or watersupply@dep.nj.gov.

An Explanation of the Water Ouality Data Table The chart on the next page provides representative analytical results of water samples routinely collected through 2020 from your water sys-Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available ent technology Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water. Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements, which a water system must follow Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is ry for control of microbial conta Maximum Residual Disinfectant Level Goal (M RDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

	Pat	thog	ens	Nı	utrie	nts	Pe	sticio	les	O Co	olati organ mpoi s	le ic ind	Inc	orgar	ics		adic		F	Rado	n	n	infect produ	
Sources	Н	Μ	L	Н	Μ	L	Н	Μ	L	Н	Μ	L	Н	Μ	L	Н	Μ	L	Н	Μ	L	Н	М	L
Wells—12		6	6	7		5		7	5	7		5	7	1	4	7	4	1		7	5	7	5	
GUDI—2	2			2						2			2			2				2		2		
Surface water intakes-1	1				1				1		1		1					1			1	1		

SUSCEPTIBILITY RATINGS FOR BRICK TOWNSHIP MUA SOURCES

The table provides ratings of high (H), medium (M) or low (L) for each contaminant category. If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels. NJDEP found the following potential contaminant sources within the source assessment areas for our sources: underground storage tanks, known contaminated sites, cemeteries, discharge to ground/surface water permits, storm sewer permits, landfills. If you have questions regarding the Source Water Assessment Report or Summary please contact the Bureau of Safe Drinking Water at watersupply@dep.nj.gov. or call (1-609-292-5550).

Explanation of Violations There were no violations.

Variances/Exemptions This water system was given a waiver by the NJDEP for exemption from monitoring for synthetic organic compounds (SOCs). SOCs include substances like pesticides, herbicides, and plasticizers. The waiver was given after the NJDEP performed extensive analyses on the Metedeconk River.

Unregulated Contaminants The U.S. Environmental Protection Agency (EPA) is working to resolve several scientific issues that will allow it to set cryptosporidium safety standards. The Authority's testing performed in 2017 exhibited no detectable presence of cryptosporidium on any occasion. No precaution about the drinking water is currently needed for the general public. The Authority's water undergoes extensive treatment to include coagulation, sedimentation, and filtration. Cryptosporidium is effectively removed by filtration, consequently no finished water delivered by Brick Utilities has ever shown any presence of cryptosporidium.

Contaminant	Viola - tion Y/N	Brick Twp MUA	Unit Measuremen t	MCLG	MCL	Major sources in Drinking Water			
		MICROBIOLOG	ICAL CONTAMINA	NTS					
Total Coliform	N	1.1 %	% Samples	0	5% of monthly samples are positive	Naturally present in the environment.			
Turbidity (1)	N	0.06 Avg. 0.18 Max. 100 % samples <0.3 NTU	95% samples < 0.3 NTU TT	Soil runoff. Turbidity is a measure of cloudiness in the water. We monitor it because it is a good indica tor of water quality. High turbidity can hinder the effectiveness of disinfectants.					
		INORGANI	C CONTAMINANTS	5					
Barium	N	0.07 Max. range: 0.030.07	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.			
Copper (2)	N	90th percentile: 0.01 0 sites > AL	ppm	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits.				
Lead (2)	N	90th percentile: 1.25 0 sites > AL	ppb	AL=15	Corrosion of household plumbing systems; erosion of natural deposits.				
Nitrate (as Nitrogen)	N	0.56 Max. range: 0.020.56	ppm	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.			
		DISINFECTANTS AND I	DISINFECTION BYP	RODUCTS					
TTHM (total trihalomethanes)	N	STAGE2 highest LRAA 51.0 range: 21.251.6	ppb	N/A	80	Byproduct of drinking water disinfection.			
Haloacetic Acids (HAA5)	N	STAGE2 highest LRAA 32.6 range: 11.039.6	ppb	N/A	60	Byproduct of drinking water disinfection.			
Chloramine	N	highest annual avg: 1.56 range: 0.182.00	ppm	4 (MRDLG)	4 (MRDL)	Water additive used to control microbes.			
Chlorine	N	highest annual avg: 1.09 range: 0.111.35	ppb	4 (MRDLG)	4 (MRDL)	Water additive used to control microbes.			
		UCMR4 (Unregulated	Contaminant Mor	nitoring Rule) (3)				
Manganese	N	0.4 Max range: 0.40.4	ppb	N/A	50	Leaching from natural deposits.			
Haloacetic Acids (HAA5)	N	46.40 Max range: 1946.40	ppb	N/A	60	Byproduct of drinking water disinfection.			
Haloacetic Acids (HAA6Br)	N/A	8.35 Max range: 4.108.35	ppb	N/A	CNR	Byproduct of drinking water disinfection.			
Haloacetic Acids (HAA9)	N/A	52.86 Max range: 23.5252.86	CNR	Byproduct of drinking water disinfection.					

1. Turbidity is a measure of the cloudiness of the water. We monitor turbidity because it is a good indicator of water quality. High turbidity can hinder the effectiveness of disinfectants. 2. Lead and copper were tested in 2020, in accordance with permit requirements.

3. This testing is part of the fourth unregulated contaminant monitoring rule (UCMR4). The UCMR4 will provide baseline occurrence data for EPA to make decisions about potential future drinking water regulations.

 $AL = Action \ Level$ Key <u>To Table</u> *TT* = *Treatment Technique* ND = None DetectedN/A = Not Applicable

MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal *NTU* = *Nepheloetric Turbidity Units* MRDL = Maximum Residual Disinfectant Level *CNR* = *Currently Not Regulated*

pCi/l = picocuries per liter (a measure of radioactivity) ppm = parts per million, or milligram per liter (mg/l) ppb = parts per billion, or micrograms per liter (ug/l) MRDLG = Maximum Residual Disinfectant Level Goal LRAA = Locational Running Annual Average

PRSRT-STD U.S. POSTAGE PAID PERMIT NO. 222 LAKEWOOD, NJ 08701

BOROUGH OF POINT PLEASANT PO BOX 25 POINT PLEASANT, NJ 08742

WATER CUSTOMER POINT PLEASANT, NEW JERSEY 08742

2020 АИИЛАL DRINKING WATER REPORT

